Extremal Valued Fields
Algebra i logika, Tome 43 (2004) no. 5, pp. 582-588.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every finite-dimensional skew field whose center is an extremal valued field is defect free. We construct an example of an algebraically complete valued field such that a finite-dimensional skew field over it has a non-trivial defect, that is, there exist algebraically complete valued fields that are not extremal.
Keywords: extremal valued field, algebraically complete valued field.
@article{AL_2004_43_5_a3,
     author = {Yu. L. Ershov},
     title = {Extremal {Valued} {Fields}},
     journal = {Algebra i logika},
     pages = {582--588},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_5_a3/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Extremal Valued Fields
JO  - Algebra i logika
PY  - 2004
SP  - 582
EP  - 588
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_5_a3/
LA  - ru
ID  - AL_2004_43_5_a3
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Extremal Valued Fields
%J Algebra i logika
%D 2004
%P 582-588
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_5_a3/
%G ru
%F AL_2004_43_5_a3
Yu. L. Ershov. Extremal Valued Fields. Algebra i logika, Tome 43 (2004) no. 5, pp. 582-588. http://geodesic.mathdoc.fr/item/AL_2004_43_5_a3/

[1] Yu. L. Ershov, Kratno normirovannye polya, Sib. shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 2000

[2] F.-V. Kuhlmann, Valuation theory of fields, Abelian groups and modules, Habilitationsschrift, Universität Heidelberg, Heidelberg, 1994

[3] F.-V. Kuhlmann, “Elementary properties of power series fields over finite fields”, J. Symb. Log., 66:2 (2001), 771–791 | DOI | MR | Zbl

[4] L. van den Dries, F.-V. Kuhlmann, “Images of additive polynomials in $F_p((t))$ have the approximation property”, Can. Math. Bull., 45:1 (2002), 71–79 | MR | Zbl

[5] N. Burbaki, Algebra (moduli, koltsa, formy), Nauka, M., 1966 | MR

[6] P. Draxl, “Ostrowski's theorem for Henselian valued skew fields”, J. Rein Angew. Math., 354 (1984), 213–218 | MR | Zbl

[7] R. Pirs, Assotsiativnye algebry, Mir, M., 1986 | MR

[8] N. Jacobson, Finite dimensional division algebras over fields, Springer-Verlag, Berlin, Heidelberg, 1996 | MR | Zbl