Quasiassociative Algebras with Simple Artinian Null Part
Algebra i logika, Tome 43 (2004) no. 5, pp. 551-564.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any quasiassociative algebra with simple Artinian null part is isomorphic to a unique matrix algebra $M_n(\Delta)$, where $\Delta$ is a quasiassociative division algebra.
Keywords: quasiassociative algebra with simple Artinian null part
Mots-clés : matrix algebra.
@article{AL_2004_43_5_a1,
     author = {H. Albuquerque and A. P. Santana},
     title = {Quasiassociative {Algebras} with {Simple} {Artinian} {Null} {Part}},
     journal = {Algebra i logika},
     pages = {551--564},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_5_a1/}
}
TY  - JOUR
AU  - H. Albuquerque
AU  - A. P. Santana
TI  - Quasiassociative Algebras with Simple Artinian Null Part
JO  - Algebra i logika
PY  - 2004
SP  - 551
EP  - 564
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_5_a1/
LA  - ru
ID  - AL_2004_43_5_a1
ER  - 
%0 Journal Article
%A H. Albuquerque
%A A. P. Santana
%T Quasiassociative Algebras with Simple Artinian Null Part
%J Algebra i logika
%D 2004
%P 551-564
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_5_a1/
%G ru
%F AL_2004_43_5_a1
H. Albuquerque; A. P. Santana. Quasiassociative Algebras with Simple Artinian Null Part. Algebra i logika, Tome 43 (2004) no. 5, pp. 551-564. http://geodesic.mathdoc.fr/item/AL_2004_43_5_a1/

[1] H. Albuquerque, S. Majid, “Quasialgebra structure of the octonions”, J. Algebra, 220:1 (1999), 188–224 | DOI | MR | Zbl

[2] H. Albuquerque, A. Elduque, J. Perez-Izquierdo, “$Z_2$-quasialgebras”, Commun. Algebra, 30:5 (2002), 2161–2174 | DOI | MR | Zbl

[3] H. Albuquerque, A. Elduque, J. Perez-Izquierdo, “Superalgebras with semisimple null part”, Commun. Algebra, 25:5 (1997), 1573–1587 | DOI | MR | Zbl

[4] C. Draper, Superálgebras asociativas, Universidad de Málaga, Tesina de Licenciatura, 1997

[5] N. Jacobson, Structure of rings, revised edition, Colloq. Publ., Am. Math. Soc., 37, Am. Math. Soc., Providence, RI, 1964 | MR

[6] C. Nastasescu, Graded ring theory, North-Holland Publ. Co, Amsterdam, 1982 | MR | Zbl

[7] H. Albuquerque, A. P. Santana, A note on quasiassociative algebras, Textos Mat., 32, The J. A. Pereira da Silva Birthday Schrift | MR | Zbl

[8] H. Albuquerque, S. Majid, “Clifford algebras obtained by twisting of group algebras”, J. Pure Appl. Algebra, 171:2–3 (2002), 133–148 | DOI | MR | Zbl

[9] H. Albuquerque, A. Elduque, J. Perez-Izquierdo, “Alternative quasialgebras”, Bull. Aust. Math. Soc., 63:2 (2001), 257–268 | DOI | MR | Zbl

[10] R. Pierce, Associative algebras, Grad. Texts Math., 88, Springer-Verlag, New York, 1982 | MR | Zbl