Autostable $\rm I$-Algebras
Algebra i logika, Tome 43 (2004) no. 5, pp. 511-550

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an algebraic description for autostable (computably categorical) Boolean algebras with a finite set of distinguished ideals. It is proved that an elementary theory for every such algebra is $\omega$-categorical and decidable.
Keywords: autostable (computably categorical) Boolean algebra with finite set of distinguished ideals, elementary theory, $\omega$-categorical theory, decidable theory.
@article{AL_2004_43_5_a0,
     author = {P. E. Alaev},
     title = {Autostable $\rm I${-Algebras}},
     journal = {Algebra i logika},
     pages = {511--550},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Autostable $\rm I$-Algebras
JO  - Algebra i logika
PY  - 2004
SP  - 511
EP  - 550
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/
LA  - ru
ID  - AL_2004_43_5_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Autostable $\rm I$-Algebras
%J Algebra i logika
%D 2004
%P 511-550
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/
%G ru
%F AL_2004_43_5_a0
P. E. Alaev. Autostable $\rm I$-Algebras. Algebra i logika, Tome 43 (2004) no. 5, pp. 511-550. http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/