Autostable $\rm I$-Algebras
Algebra i logika, Tome 43 (2004) no. 5, pp. 511-550.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give an algebraic description for autostable (computably categorical) Boolean algebras with a finite set of distinguished ideals. It is proved that an elementary theory for every such algebra is $\omega$-categorical and decidable.
Keywords: autostable (computably categorical) Boolean algebra with finite set of distinguished ideals, elementary theory, $\omega$-categorical theory, decidable theory.
@article{AL_2004_43_5_a0,
     author = {P. E. Alaev},
     title = {Autostable $\rm I${-Algebras}},
     journal = {Algebra i logika},
     pages = {511--550},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Autostable $\rm I$-Algebras
JO  - Algebra i logika
PY  - 2004
SP  - 511
EP  - 550
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/
LA  - ru
ID  - AL_2004_43_5_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Autostable $\rm I$-Algebras
%J Algebra i logika
%D 2004
%P 511-550
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/
%G ru
%F AL_2004_43_5_a0
P. E. Alaev. Autostable $\rm I$-Algebras. Algebra i logika, Tome 43 (2004) no. 5, pp. 511-550. http://geodesic.mathdoc.fr/item/AL_2004_43_5_a0/

[1] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[2] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[3] N. T. Kogabaev, “Avtoustoichivost bulevykh algebr s vydelennym idealom”, Sib. matem. zh., 39:5 (1998), 1074–1084 | MR | Zbl

[4] Yu. G. Ventsov, “Algoritmicheskie svoistva vetvyaschikhsya modelei”, Algebra i logika, 25:4 (1986), 369–383 | MR | Zbl

[5] Handbook of recursive mathematics, vol. 1, Stud. Logic Found. Math., 139, eds. Y. L. Ershov, S. S. Goncharov, A. Nerode, J. B. Remmel, Elsevier Science B.V., Amsterdam, 1998 | MR

[6] S. S. Goncharov, Yu. L. Ershov, Konstruktivnye modeli, Sibirskaya shkola algebry i logiki, Nauchnaya kniga, Novosibirsk, 1999

[7] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[8] G. Keisler, Ch. Ch. Chen, Teoriya modelei, Mir, M., 1977 | MR

[9] D. E. Palchunov, “Konechno-aksiomatiziruemye bulevy algebry s vydelennymi idealami”, Algebra i logika, 26:4 (1987), 435–455 | MR

[10] A. Touraille, “Théories d'algébres de Boole munies d'idéaux distingués. I: Théories élémentaires”, J. Symb. Log., 52:4 (1987), 1027–1043 | DOI | MR | Zbl