Varieties of Associative Algebras Satisfying Engel Identities
Algebra i logika, Tome 43 (2004) no. 4, pp. 482-505.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variety of associative algebras (rings) is said to be Engel if it satisfies an identity of the form $[\ldots[[x,y],y],\ldots,y]=0$. On the Zorn lemma, every non-Engel variety contains some just non-Engel variety, that is, a minimal (w.r.t. inclusion) element in the set of all non-Engel varieties. A list of such varieties for algebras over a field of characteristic 0 was made up by Yu. N. Mal'tsev. Here, we present a complete description of just non-Engel varieties both for the case of algebras over a field of positive characteristic and for the case of rings. This gives the answer to Question 3.53 in the Dniester Notebook.
Keywords: Engel identity, just non-Engel variety, variety of associative rings, associative algebra over a field.
@article{AL_2004_43_4_a5,
     author = {O. B. Finogenova},
     title = {Varieties of {Associative} {Algebras} {Satisfying} {Engel} {Identities}},
     journal = {Algebra i logika},
     pages = {482--505},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a5/}
}
TY  - JOUR
AU  - O. B. Finogenova
TI  - Varieties of Associative Algebras Satisfying Engel Identities
JO  - Algebra i logika
PY  - 2004
SP  - 482
EP  - 505
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a5/
LA  - ru
ID  - AL_2004_43_4_a5
ER  - 
%0 Journal Article
%A O. B. Finogenova
%T Varieties of Associative Algebras Satisfying Engel Identities
%J Algebra i logika
%D 2004
%P 482-505
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a5/
%G ru
%F AL_2004_43_4_a5
O. B. Finogenova. Varieties of Associative Algebras Satisfying Engel Identities. Algebra i logika, Tome 43 (2004) no. 4, pp. 482-505. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a5/

[1] S. I. Kublanovskii, “O mnogoobraziyakh assotsiativnykh algebr s lokalnymi usloviyami konechnosti”, Algebra i analiz, 9:4 (1997), 119–174 | MR | Zbl

[2] V. T. Markov, “O sistemakh porozhdayuschikh $T$-idealov konechnoporozhdennykh svobodnykh algebr”, Algebra i logika, 18:5 (1979), 587–598 | MR | Zbl

[3] Yu. N. Maltsev, “O mnogoobraziyakh assotsiativnykh algebr”, Algebra i logika, 15:5 (1976), 579–584 | MR

[4] Yu. N. Maltsev, “Pochti engelevy lokalno konechnye mnogoobraziya assotsiativnykh kolets”, Izv. vuzov. Matem., 1982, no. 11, 41–42 | MR

[5] Dnestrovskaya tetrad, 4-e izd., In-t matem. SO RAN, Novosibirsk, 1993 | MR

[6] I. V. Lvov, Teorema Brauna o radikale konechnoporozhdennoi $PI$-algebry, preprint 63, In-t matem. SO AN SSSR, Novosibirsk, 1984

[7] Yu. N. Mal'cev, “Just non commutative varieties of operator algebras and rings with some conditions on nilpotent elements”, Tamkang J. Math., 27:1 (1996), 59–65 | MR