Definability in Normal Extensions of S4
Algebra i logika, Tome 43 (2004) no. 4, pp. 387-410.

Voir la notice de l'article provenant de la source Math-Net.Ru

A projective Beth property, PB2, in normal modal logics extending S4 is studied. A convenient criterion is furnished for PB2 to be valid in a larger family of extensions of K4. All locally tabular extensions of the Grzegorczyk logic with PB2 are described. Superintuitionistic logics with the projective Beth property that have no modal companions with this property are found.
Keywords: modal logic, Grzegorczyk logic, superintuitionistic logic, locally tabular extension, projective Beth property.
@article{AL_2004_43_4_a0,
     author = {L. L. Maksimova},
     title = {Definability in {Normal} {Extensions} of {S4}},
     journal = {Algebra i logika},
     pages = {387--410},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_4_a0/}
}
TY  - JOUR
AU  - L. L. Maksimova
TI  - Definability in Normal Extensions of S4
JO  - Algebra i logika
PY  - 2004
SP  - 387
EP  - 410
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_4_a0/
LA  - ru
ID  - AL_2004_43_4_a0
ER  - 
%0 Journal Article
%A L. L. Maksimova
%T Definability in Normal Extensions of S4
%J Algebra i logika
%D 2004
%P 387-410
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_4_a0/
%G ru
%F AL_2004_43_4_a0
L. L. Maksimova. Definability in Normal Extensions of S4. Algebra i logika, Tome 43 (2004) no. 4, pp. 387-410. http://geodesic.mathdoc.fr/item/AL_2004_43_4_a0/

[1] E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339 | MR

[2] Model-theoretic logics, eds. J. Barwise, S. Feferman, Springer-Verlag, New York, 1985 | MR

[3] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory”, J. Symb. Log., 22:3 (1957), 269–285 | DOI | MR | Zbl

[4] I. Sain, “Beth's and Craig's properties via epimorphisms and amalgamation in algebraic logic”, Algebraic logic and universal algebra in computer science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin a. o., 1990, 209–226 | MR

[5] L. L. Maksimova, “Modalnye logiki i mnogoobraziya modalnykh algebr: svoistvo Beta, interpolyatsiya i amalgamiruemost”, Algebra i logika, 31:2 (1992), 145–166 | MR | Zbl

[6] L. Maksimova, “Explicit and implicit definability in modal and related logics”, Bull. Sect. Logic, 27:1/2 (1998), 36–39

[7] L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696 | MR | Zbl

[8] L. L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Log., 105:1–3 (2000), 83–102 | DOI | MR | Zbl

[9] L. L. Maksimova, “Proektivnoe svoistvo Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl

[10] L. L. Maksimova, “Ob interpolyatsii v modalnykh logikakh”, Neklassicheskie logiki, Shtiintsa, Kishinev, 1987, 40–56

[11] H. Rasiowa, R. Sikorski, The mathematics of metamathematics, PWN, Warszawa, 1963 | MR

[12] W. Blok, Varieties of interior algebras, PhD Thesis, Amsterdam, 1976 | Zbl

[13] L. L. Maksimova, “Modalnye logiki konechnykh sloev”, Algebra i logika, 14:3 (1975), 304–319 | MR | Zbl

[14] T. Hosoi, “On intermediate logics I”, J. Fac. Sci. Univ. Tokyo, Sec. Ia, 14 (1967), 293–312 | MR

[15] L. Maksimova, “Interpolation properties in superintuitionistic logics”, Stud. Log., 38:4 (1979), 419–428 | DOI | MR

[16] E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112 | DOI | MR | Zbl

[17] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl

[18] J. Czelakowski, “Logical matrices and the amalgamation property”, Stud. Log., 41:4 (1982), 329–341 | DOI | MR | Zbl

[19] L. L. Maksimova, “Projective Beth's properties in in.nite slice extensions of the modal logic $K4$”, Advances in modal logic, vol. 3, Proc. 3rd AiML workshop, ed. F. Wolter et al., World Scientific Publ., Singapore, 2002, 349–363 | MR | Zbl

[20] L. L. Maksimova, “Otsutstvie interpolyatsionnogo svoistva u modalnykh naparnikov logiki Dammeta”, Algebra i logika, 21:6 (1982), 690–694 | MR | Zbl

[21] G. Boolos, “On systems of modal logic with provability interpretations”, Theoria, 46:1 (1980), 7–18 | MR

[22] W. Rautenberg, “Modal tableau calculi and interpolation”, J. Philos. Log., 12 (1983), 403–423 | DOI | MR | Zbl