Elementary Pairs of Primitive Normal Theories
Algebra i logika, Tome 43 (2004) no. 3, pp. 321-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main objective of the paper is proving that classes of primitive normal, primitive bound, antiadditive, and additive theories are closed under $P$-expansions. This phenomenon is quite remarkable, for the main “structure” classes of theories studied within model theory (such as stable, totally transcendental, etc.) do not possess such a property. Furthermore, it is proved that primitive bound theories are $P$-stable, and we furnish an example of a primitive bound theory with models that are not primitive bound.
Keywords: elementary pairs, primitive normal theory, primitive bound theory, antiadditive theory, additive theory, primitive bound model.
@article{AL_2004_43_3_a2,
     author = {E. A. Palyutin},
     title = {Elementary {Pairs} of {Primitive} {Normal} {Theories}},
     journal = {Algebra i logika},
     pages = {321--340},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_3_a2/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Elementary Pairs of Primitive Normal Theories
JO  - Algebra i logika
PY  - 2004
SP  - 321
EP  - 340
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_3_a2/
LA  - ru
ID  - AL_2004_43_3_a2
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Elementary Pairs of Primitive Normal Theories
%J Algebra i logika
%D 2004
%P 321-340
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_3_a2/
%G ru
%F AL_2004_43_3_a2
E. A. Palyutin. Elementary Pairs of Primitive Normal Theories. Algebra i logika, Tome 43 (2004) no. 3, pp. 321-340. http://geodesic.mathdoc.fr/item/AL_2004_43_3_a2/

[1] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[2] E. A. Palyutin, “Antiadditivnye primitivno svyaznye teorii”, Algebra i logika, 42:4 (2003), 473–496 | MR | Zbl

[3] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam, 1978 | MR | Zbl

[4] E. A. Palyutin, “Additive theories”, Proc. Logic Colloq.'98, Prague, Lect. Notes Math. Logic, 13, ASL, Massachusetts, 2000, 352–356 | MR

[5] T. G. Mustafin, “Novye ponyatiya stabilnosti teorii”, Trudy sovetsko-frantsuzskogo kollokviuma po teorii modelei, Karaganda, 1990, 112–125 | MR | Zbl

[6] T. Nurmagambetov, B. Puaza, “O chisle elementarnykh par nad mnozhestvami”, Trudy frantsuzsko-kazakhstanskogo kollokviuma po teorii modelei, Almaty, 1995, 73–82

[7] E. A. Palyutin, “$E^*$-stabilnye teorii”, Algebra i logika, 42:2 (2003), 194–210 | MR | Zbl

[8] M. D. Morley, “Categoricity in power”, Trans. Am. Math. Soc., 114:2 (1965), 514–538 | DOI | MR | Zbl

[9] S. Shelah, “Stable theories”, Isr. J. Math., 7:3 (1969), 187–202 | DOI | MR | Zbl