The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic
Algebra i logika, Tome 43 (2004) no. 2, pp. 235-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the disjunction property, $\mathbf{DP}$, in the class of extensions of minimal logic $\mathbf{L}_{j}$. Conditions are described under which $\mathbf{DP}$ is translated from the class $\mathbf{PAR}$ of properly paraconsistent extensions of the logics of class $\mathbf{L}_{j}$ into the class $\mathbf{INT}$ of intermediate extensions and the class $\mathbf{NEG}$ of negative extensions, and conditions for its being translated back into $\mathbf{PAR}$. The logic $\mathbf{L}_{F}$ in $\mathbf{PAR}$, which specifies conditions for $\mathbf{DP}$ to be translated from $\mathbf{PAR}$ into $\mathbf{NEG}$, is defined and is characterized in terms of $j$-algebras and Kripke frames. Moreover, we show that ${\mathbf L}_F$ is decidable and possesses the disjunction property.
Keywords: paraconsistent extension of minimal logic, $j$-algebra - Kripke frame, disjunction property.
@article{AL_2004_43_2_a7,
     author = {M. V. Stukacheva},
     title = {The {Disjunction} {Property} in the {Class} of {Paraconsistent} {Extensions} of {Minimal} {Logic}},
     journal = {Algebra i logika},
     pages = {235--252},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_2_a7/}
}
TY  - JOUR
AU  - M. V. Stukacheva
TI  - The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic
JO  - Algebra i logika
PY  - 2004
SP  - 235
EP  - 252
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_2_a7/
LA  - ru
ID  - AL_2004_43_2_a7
ER  - 
%0 Journal Article
%A M. V. Stukacheva
%T The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic
%J Algebra i logika
%D 2004
%P 235-252
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_2_a7/
%G ru
%F AL_2004_43_2_a7
M. V. Stukacheva. The Disjunction Property in the Class of Paraconsistent Extensions of Minimal Logic. Algebra i logika, Tome 43 (2004) no. 2, pp. 235-252. http://geodesic.mathdoc.fr/item/AL_2004_43_2_a7/

[1] A. Chagrov, M. Zakharyaschev, “The undecidability of the Disjunction Property of propositional logics and other related problems”, J. Symb. Log., 58:3 (1993), 967–1002 | DOI | MR | Zbl

[2] D. M. Gabbay, “The decidability of the Kreisel–CPutnam system”, J. Symb. Log., 35:3 (1970), 431–437 | DOI | MR

[3] L. L. Maksimova, “On maximal intermediate propositional logic with the Disjunction property”, Stud. Log., 45:1 (1986), 69–75 | DOI | MR | Zbl

[4] P. Minari, “On the extensions of intuitionistic propositional logic with Kreisel–Putnam's and Scott's schemes”, Stud. Log., 45:1 (1986), 55–68 | DOI | MR | Zbl

[5] H. B. Curry, Foundations of mathematical logic, McGrow-Hill Book Company, New York, 1963 | MR | Zbl

[6] S. P. Odintsov, “Maximal paraconsistent extension of Johansson logic”, Log. Anal., Nouv. Sér., 41:161–163 (2000), 107–120 | MR

[7] S. P. Odintsov, “Representation of $j$-algebras and Segerberg's logics”, Log. Anal., Nouv. Sér., 42:165/166 (2000), 81–106 | MR

[8] H. Rasiowa, An algebraic approach to non-classical logics, North-Holland, Amsterdam, 1974 | MR | Zbl

[9] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR

[10] S. P. Odintsov, “Logic of classical refutability and class of extensions of minimal logic”, Log. Log. Philos., 7/8 (1999/2000) | MR | Zbl