Gr\"obner--Shirshov Bases for Universal Enveloping Conformal Algebras of Simple Conformal Lie Superalgebras of Type $W_N$
Algebra i logika, Tome 43 (2004) no. 2, pp. 197-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

For simple conformal Lie superalgebras of type $W_N$, Gröbner–Shirshov bases of their universal enveloping associative conformal algebras are found. The universal enveloping algebras considered correspond to a minimal locality function for which there is an injective embedding.
Keywords: Gröbner–Shirshov basis, universal enveloping algebra, locality function.
Mots-clés : simple conformal Lie superalgebra
@article{AL_2004_43_2_a4,
     author = {P. S. Kolesnikov},
     title = {Gr\"obner--Shirshov {Bases} for {Universal} {Enveloping} {Conformal} {Algebras} of {Simple} {Conformal} {Lie} {Superalgebras} of {Type} $W_N$},
     journal = {Algebra i logika},
     pages = {197--219},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_2_a4/}
}
TY  - JOUR
AU  - P. S. Kolesnikov
TI  - Gr\"obner--Shirshov Bases for Universal Enveloping Conformal Algebras of Simple Conformal Lie Superalgebras of Type $W_N$
JO  - Algebra i logika
PY  - 2004
SP  - 197
EP  - 219
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_2_a4/
LA  - ru
ID  - AL_2004_43_2_a4
ER  - 
%0 Journal Article
%A P. S. Kolesnikov
%T Gr\"obner--Shirshov Bases for Universal Enveloping Conformal Algebras of Simple Conformal Lie Superalgebras of Type $W_N$
%J Algebra i logika
%D 2004
%P 197-219
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_2_a4/
%G ru
%F AL_2004_43_2_a4
P. S. Kolesnikov. Gr\"obner--Shirshov Bases for Universal Enveloping Conformal Algebras of Simple Conformal Lie Superalgebras of Type $W_N$. Algebra i logika, Tome 43 (2004) no. 2, pp. 197-219. http://geodesic.mathdoc.fr/item/AL_2004_43_2_a4/

[1] V. G. Kac, Vertex algebras for beginners, Univ. Lect. Ser., 10, Am. Math. Soc., Providence, RI, 1996

[2] D. Fattori, V. G. Kac, Classification of finite Lie conformal superalgebras

[3] S.-J. Cheng, V. G. Kac, “A new $N=6$ superconformal algebra”, Commun. Math. Phys., 186:1 (1997), 219–231 | DOI | MR | Zbl

[4] L. A. Bokut, Y. Fong, W.-F. Ke, “Gröbner–Shirshov bases and composition lemma for associative conformal algebras: an example”, Combinatorial and computational algebra, Int. conf. comb. comput. algebra, May 24–29, 1999, Hong Kong, China, Contemp. Math., 264, Am. Math. Soc., Providence, RI, 2000, 63–90 | MR | Zbl

[5] L. A. Bokut', Y. Fong, W.-F. Ke, “Composition-diamond lemma for associative conformal algebras”, J. Algebra, 272:2 (2004), 739–774 | DOI | MR | Zbl

[6] L. A. Bokut, Yu. Fong, V.-F. Ke, P. S. Kolesnikov, “Bazisy Grëbnera i Grëbnera–Shirshova v algebre i konformnye algebry”, Fundam. prikl. matem., 6:3 (2000), 669–706 | MR | Zbl

[7] M. Roitman, “Universal enveloping conformal algebras”, Sel. Math., New Ser., 6:3 (2000), 319–345 | DOI | MR | Zbl

[8] A. A. Belavin, A. M. Polyakov, A. B. Zamolodchikov, “Infinite conformal symmetry in two-dimensional quantum field theory”, Nucl. Phys. B, 241:2 (1984), 333–380 | DOI | MR | Zbl

[9] R. E. Borcherds, “Vertex algebras, Kac–Moody algebras, and the Monster”, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068–3071 | DOI | MR

[10] A. D'Andrea, V. G. Kac, “Structure theory of finite conformal algebras”, Sel. Math., New Ser., 4:3 (1998), 377–418 | DOI | MR

[11] A. I. Shirshov, “Nekotorye algoritmicheskie problemy dlya algebr Li”, Sib. matem. zh., 3:2 (1962), 292–296 | Zbl

[12] L. A. Bokut, “Vlozheniya v prostye assotsiativnye algebr”, Algebra i logika, 15:2 (1976), 117–142 | MR | Zbl

[13] G. M. Bergman, “The diamond lemma for ring theory”, Adv. Math., 29:2 (1978), 178–218 | DOI | MR | Zbl

[14] M. Roitman, “On free conformal and vertex algebras”, J. Algebra, 217:2 (1999), 496–527 | DOI | MR | Zbl

[15] L. A. Bokut, Y. Fong, W.-F. Ke, “Free associative conformal algebras”, Proc. 2nd Tainan–Moscow Algebra Comb. Workshop (Tainan, 1997), Springer-Verlag, Hong Kong, 2000, 13–25 | Zbl

[16] L. A. Bokut, P. S. Kolesnikov, “Bazisy Grebnera–Shirshova: ot zarozhdeniya do nashikh dnei”, Voprosy teorii predstavlenii algebr i grupp. 7, Zapiski nauchn. semin. LOMI, 272, 2000, 26–67 | MR | Zbl

[17] B. Buchberger, “Ein algorithmisches Kriterium für die Lösbarkeit algebraischen Gleichungssystems”, Aequationes Math., 4 (1970), 374–383 | DOI | MR | Zbl

[18] A. Beilinson, V. Drinfeld, Chiral algebras

[19] B. Bakalov, A. D'Andrea, V. G. Kac, “Theory of finite pseudoalgebras”, Adv. Math., 162:1 (2001), 1–140 | DOI | MR | Zbl