Computable Homogeneous Boolean Algebras and a Metatheorem
Algebra i logika, Tome 43 (2004) no. 2, pp. 133-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider computable homogeneous Boolean algebras. Previously, countable homogeneous Boolean algebras have been described up to isomorphism and a simple criterion has been found for the existence of a strongly constructive (decidable) isomorphic copy for such. We propose a natural criterion for the existence of a constructive (computable) isomorphic copy. For this, a new hierarchy of $\varnothing^{(\omega)}$ – computable functions and sets is introduced, which is more delicate than Feiner's. Also, a metatheorem is proved connecting computable Boolean algebras and their hyperarithmetical quotient algebras.
Keywords: computable homogeneous Boolean algebra, constructive copy for an algebra, hierarchy.
@article{AL_2004_43_2_a0,
     author = {P. E. Alaev},
     title = {Computable {Homogeneous} {Boolean} {Algebras} and a {Metatheorem}},
     journal = {Algebra i logika},
     pages = {133--158},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_2_a0/}
}
TY  - JOUR
AU  - P. E. Alaev
TI  - Computable Homogeneous Boolean Algebras and a Metatheorem
JO  - Algebra i logika
PY  - 2004
SP  - 133
EP  - 158
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_2_a0/
LA  - ru
ID  - AL_2004_43_2_a0
ER  - 
%0 Journal Article
%A P. E. Alaev
%T Computable Homogeneous Boolean Algebras and a Metatheorem
%J Algebra i logika
%D 2004
%P 133-158
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_2_a0/
%G ru
%F AL_2004_43_2_a0
P. E. Alaev. Computable Homogeneous Boolean Algebras and a Metatheorem. Algebra i logika, Tome 43 (2004) no. 2, pp. 133-158. http://geodesic.mathdoc.fr/item/AL_2004_43_2_a0/

[1] A. S. Morozov, “Schetnye odnorodnye bulevy algebry”, Algebra i logika, 21:3 (1982), 269–282 | MR

[2] Logicheskaya tetrad. Nereshennye voprosy matematicheskoi logiki, eds. Yu. L. Ershova, S. S. Goncharova, Institut matematiki SO AN SSSR, Novosibirsk, 1986 | MR

[3] S. Yu. Podzorov, “Rekursivnye odnorodnye bulevy algebry”, Algebra i logika, 40:2 (2001), 174–191 | MR | Zbl

[4] L. Feiner, “Hierarchies of Boolean algebras”, J. Symb. Log., 35:3 (1970), 365–374 | DOI | MR

[5] C. P. Odintsov, V. L. Selivanov, “Arifmeticheskaya ierarkhiya i idealy numerovannykh bulevykh algebr”, Sib. matem. zh., 30:6 (1989), 140–149 | MR | Zbl

[6] S. S. Goncharov, Schetnye bulevy algebry i razreshimost, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR

[7] Kh. Rodzhers, Teoriya rekursivnykh funktsii i effektivnaya vychislimost, Mir, Moskva, 1972 | MR

[8] C. J. Ash, “Recursive labelling systems and stability of recursive structures in hyperarithmetical degrees”, Trans. Am. Math. Soc., 298:2 (1986), 497–514 | DOI | MR | Zbl

[9] C. J. Ash, “Labelling systems and r.e. structures”, Ann. Pure Appl. Logic, 47:2 (1990), 99–119 | DOI | MR | Zbl

[10] C. J. Ash, J. F. Knight, “Ramified systems”, Ann. Pure Appl. Logic, 70:3 (1994), 205–221 | DOI | MR | Zbl

[11] C. J. Ash, “A construction for recursive linear orderings”, J. Symb. Logic, 56:2 (1991), 673–683 | DOI | MR | Zbl