Complete Theories with Finitely Many Countable Models. I
Algebra i logika, Tome 43 (2004) no. 1, pp. 110-124

Voir la notice de l'article provenant de la source Math-Net.Ru

A syntactic characterization is furnished for the class of elementary complete theories with finitely many countable models, which is the analog of a known theorem by Ryll-Nardzewski on countably categorical theories, and is based on classifying the theories by Rudin–Keisler quasiorders and distribution functions of a number of models limit over types.
Keywords: elementary complete theory, countable model, Rudin–Keisler quasiorder.
@article{AL_2004_43_1_a4,
     author = {S. V. Sudoplatov},
     title = {Complete {Theories} with {Finitely} {Many} {Countable} {Models.~I}},
     journal = {Algebra i logika},
     pages = {110--124},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_1_a4/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Complete Theories with Finitely Many Countable Models. I
JO  - Algebra i logika
PY  - 2004
SP  - 110
EP  - 124
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_1_a4/
LA  - ru
ID  - AL_2004_43_1_a4
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Complete Theories with Finitely Many Countable Models. I
%J Algebra i logika
%D 2004
%P 110-124
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_1_a4/
%G ru
%F AL_2004_43_1_a4
S. V. Sudoplatov. Complete Theories with Finitely Many Countable Models. I. Algebra i logika, Tome 43 (2004) no. 1, pp. 110-124. http://geodesic.mathdoc.fr/item/AL_2004_43_1_a4/