The Jacobson Radical of an Endomorphism Ring for an Abelian Group
Algebra i logika, Tome 43 (2004) no. 1, pp. 60-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Jacobson radical of an endomorphism ring is computed for a completely decomposable torsion-free Abelian group and for a mixed Abelian group in one class of mixed groups. For the latter case, we also look into the question when a factor ring w.r.t. the radical is regular in the sense of Nuemann.
Keywords: Abelian group, endomorphism ring, Jacobson radical.
@article{AL_2004_43_1_a2,
     author = {P. A. Krylov},
     title = {The {Jacobson} {Radical} of an {Endomorphism} {Ring} for an {Abelian} {Group}},
     journal = {Algebra i logika},
     pages = {60--76},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2004_43_1_a2/}
}
TY  - JOUR
AU  - P. A. Krylov
TI  - The Jacobson Radical of an Endomorphism Ring for an Abelian Group
JO  - Algebra i logika
PY  - 2004
SP  - 60
EP  - 76
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2004_43_1_a2/
LA  - ru
ID  - AL_2004_43_1_a2
ER  - 
%0 Journal Article
%A P. A. Krylov
%T The Jacobson Radical of an Endomorphism Ring for an Abelian Group
%J Algebra i logika
%D 2004
%P 60-76
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2004_43_1_a2/
%G ru
%F AL_2004_43_1_a2
P. A. Krylov. The Jacobson Radical of an Endomorphism Ring for an Abelian Group. Algebra i logika, Tome 43 (2004) no. 1, pp. 60-76. http://geodesic.mathdoc.fr/item/AL_2004_43_1_a2/

[1] R. S. Pierce, “Homomorphisms of primary abelian groups”, Topics in Abelian groups, Chicago, 1963, 215–310 | MR

[2] A. V. Mikhalev, “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya. 12, VINITI, M., 1974, 51–76

[3] V. T. Markov, A. V. Mikhalev, L. A. Skornyakov, A. A. Tuganbaev, “Koltsa endomorfizmov modulei i struktury podmodulei”, Itogi nauki i tekhniki. Algebra. Topologiya. Geometriya. 21, VINITI, M., 1983, 183–254 | MR

[4] M. Dugas, “On the Jacobson radical of some endomorphism rings”, Proc. Am. Math. Soc., 102:4 (1988), 823–826 | DOI | MR | Zbl

[5] C. E. Praeger, P. Schultz, “The Loewy length of the Jacobson radical of a bounded endomorphism ring”, Abelian groups and noncommutative rings: coll. papers mem. R. B. Warfield, Contemp. Math., 130, 1992, 349–360 | MR | Zbl

[6] J. Hausen, C. E. Praeger, P. Schultz, “Most abelian $p$-groups are determined by the Jacobson radical of their endomorphism rings”, Math. Z., 216:3 (1994), 431–436 | DOI | MR | Zbl

[7] J. Hausen, J. A. Johnson, “Determining abelian p-groups by the Jacobson radical of their endomorphism rings”, J. Algebra, 174:1 (1995), 217–224 | DOI | MR | Zbl

[8] P. A. Krylov, “Radikaly kolets endomorfizmov abelevykh grupp bez krucheniya”, Matem. sb., 95:2 (1974), 214–228 | MR | Zbl

[9] P. A. Krylov, “Radikal Dzhekobsona koltsa endomorfizmov abelevoi gruppy bez krucheniya”, Abelevy gruppy i moduli, no. 11–12, Tomsk, 1994, 99–120 | MR | Zbl

[10] P. A. Krylov, “Summy avtomorfizmov abelevykh grupp i radikal Dzhekobsona koltsa endomorfizmov”, Izv. Vuzov. Matem., 1976, no. 4, 56–66 | Zbl

[11] A. Mader, P. Schultz, “Endomorphism rings and automorphism groups of almost completely decomposable groups”, Commun. Algebra, 28:1 (2000), 51–68 | DOI | MR | Zbl

[12] L. Fuks, Beskonechnye abelevy gruppy, t. 2, Mir, M., 1977

[13] P. A. Krylov, “Vpolne tranzitivnye abelevy gruppy bez krucheniya”, Algebra i logika, 29:5 (1990), 549–560 | MR | Zbl

[14] S. Glaz, W. Wickless, “Regular and principal projective endomorphism rings of mixed abelian groups”, Commun. Algebra, 22:4 (1994), 1161–1176 | DOI | MR | Zbl

[15] U. F. Albrecht, H. P. Goeters, W. Wickless, “The flat dimension of mixed abelian groups as $E$-modules”, Rocky Mt. J. Math., 25:2 (1995), 569–590 | DOI | MR | Zbl

[16] U. Albrecht, “Mixed abelian groups with Artinian quasi-endomorphism ring”, Commun. Algebra, 25:11 (1997), 3497–3511 | DOI | MR | Zbl

[17] A. Fomin, W. Wickless, “Self-small mixed abelian groups $G$ with $G/T(G)$ finite rank divisible”, Commun. Algebra, 26:11 (1998), 3563–3580 | DOI | MR | Zbl

[18] P. A. Krylov, “Smeshannye abelevy gruppy kak moduli nad svoimi koltsami endomorfizmov”, Fund. i prikl. matem., 6:3 (2000), 793–812 | MR | Zbl

[19] P. A. Krylov, E. G. Pakhomova, E. I. Podberezina, “Ob odnom klasse smeshannykh abelevykh grupp”, Vestnik TGU, 269 (2000), 29–34

[20] P. A. Krylov, E. G. Pakhomova, “Abelevy gruppy i regulyarnye moduli”, Matem. zametki, 69:3 (2001), 402–411 | MR | Zbl

[21] D. M. Arnold, C. E. Murley, “Abelian groups $A$, such that $\operatorname{Hom}(A,-)$ preserves direct sums of copies of $A$”, Pac. J. Math., 56:1 (1975), 7–20 | MR | Zbl