Quasivarieties of Metric Algebras
Algebra i logika, Tome 42 (2003) no. 6, pp. 747-762.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce concepts of a continuous family of quasi-identities and of a continuous quasivariety. For continuous quasivarieties, a characterization theorem and an analog of the Birkhoff theorem on subdirect decomposition are proved. Also we point out the way of constructing examples of continuous quasivarieties and furnish the characterization of a relative congruence lattice of systems in the quasivarieties in question. Lastly, we re-prove the Hahn–Banach theorem on extension of a linear functional.
Keywords: metric algebra, relative quasivariety, congruence lattice.
@article{AL_2003_42_6_a7,
     author = {V. A. Khudyakov},
     title = {Quasivarieties of {Metric} {Algebras}},
     journal = {Algebra i logika},
     pages = {747--762},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a7/}
}
TY  - JOUR
AU  - V. A. Khudyakov
TI  - Quasivarieties of Metric Algebras
JO  - Algebra i logika
PY  - 2003
SP  - 747
EP  - 762
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_6_a7/
LA  - ru
ID  - AL_2003_42_6_a7
ER  - 
%0 Journal Article
%A V. A. Khudyakov
%T Quasivarieties of Metric Algebras
%J Algebra i logika
%D 2003
%P 747-762
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_6_a7/
%G ru
%F AL_2003_42_6_a7
V. A. Khudyakov. Quasivarieties of Metric Algebras. Algebra i logika, Tome 42 (2003) no. 6, pp. 747-762. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a7/

[1] N. Weaver, “Quasi-varieties of metric algebras”, Algebra Univers., 33:1 (1995), 1–9 | DOI | MR | Zbl

[2] G. Gierz, K. H. Hoffmann, K. Keimel, J. D. Lawson, M. Mislove, D. S. Scott, A compendium of continuous lattices, Springer-Verlag, Berlin a.o., 1980 | MR | Zbl

[3] V. A. Gorbunov, Algebraicheskaya teoriya kvazimnogoobrazii, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (IDMI), Novosibirsk, 1999 | Zbl