Varieties and Torsion Classes of $m$-Groups
Algebra i logika, Tome 42 (2003) no. 6, pp. 683-691.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that every variety of $m$-groups is a torsion class; find basis of identities for a product variety of $m$-groups; and show that the product of every finitely based variety of $m$-groups and a variety of Abelian $m$-groups is a finitely based variety.
Keywords: lattice-ordered group, basis of identities, variety
Mots-clés : $m$-group, torsion class of $m$-groups.
@article{AL_2003_42_6_a2,
     author = {O. V. Isaeva},
     title = {Varieties and {Torsion} {Classes} of $m${-Groups}},
     journal = {Algebra i logika},
     pages = {683--691},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a2/}
}
TY  - JOUR
AU  - O. V. Isaeva
TI  - Varieties and Torsion Classes of $m$-Groups
JO  - Algebra i logika
PY  - 2003
SP  - 683
EP  - 691
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_6_a2/
LA  - ru
ID  - AL_2003_42_6_a2
ER  - 
%0 Journal Article
%A O. V. Isaeva
%T Varieties and Torsion Classes of $m$-Groups
%J Algebra i logika
%D 2003
%P 683-691
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_6_a2/
%G ru
%F AL_2003_42_6_a2
O. V. Isaeva. Varieties and Torsion Classes of $m$-Groups. Algebra i logika, Tome 42 (2003) no. 6, pp. 683-691. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a2/

[1] M. Giraudet, J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49:4 (1999), 743–766 | DOI | MR | Zbl

[2] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[3] V. M. Kopytov, N. Ja. Medvedev, The theory of lattice-ordered groups, Kluwer Academic Publ., Dordrecht a.o., 1994 | MR | Zbl

[4] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1977 | MR | Zbl

[5] V. M. Kopytov, I. Rakhunek, “Naibolshee sobstvennoe mnogoobrazie $m$-grupp”, Algebra i logika, 42:5 (2003), 624–635 | MR | Zbl

[6] M. E. Huss, N. R. Reilly, “On reversing the order of lattice ordered groups”, J. Algebra, 91:1 (1984), 176–191 | DOI | MR | Zbl

[7] W. Ch. Holland, “Varieties of $\ell$-groups are torsion classes”, Czech. Math. J., 29:1 (1979), 11–12 | MR | Zbl