Ornament Groups on a~Minkowski Plane
Algebra i logika, Tome 42 (2003) no. 6, pp. 655-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

We are engaged in classifying up to isomorphism of discrete subgroups of an affine transformation group on a plane (a two-dimensional space) preserving the Minkowski metric. It is proved that, for subgroups that do not coincide with Euclidean ones, the orbit of almost every point is everywhere dense.
Keywords: ornament group, affine transformation groups on a plane, Minkowski plane, ergodic map.
Mots-clés : pseudoeuclidean space, $Gamma$-equivalence
@article{AL_2003_42_6_a1,
     author = {R. M. Garipov},
     title = {Ornament {Groups} on {a~Minkowski} {Plane}},
     journal = {Algebra i logika},
     pages = {655--682},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/}
}
TY  - JOUR
AU  - R. M. Garipov
TI  - Ornament Groups on a~Minkowski Plane
JO  - Algebra i logika
PY  - 2003
SP  - 655
EP  - 682
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/
LA  - ru
ID  - AL_2003_42_6_a1
ER  - 
%0 Journal Article
%A R. M. Garipov
%T Ornament Groups on a~Minkowski Plane
%J Algebra i logika
%D 2003
%P 655-682
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/
%G ru
%F AL_2003_42_6_a1
R. M. Garipov. Ornament Groups on a~Minkowski Plane. Algebra i logika, Tome 42 (2003) no. 6, pp. 655-682. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/

[1] R. M. Garipov, “Algebraicheskii metod vychisleniya kristallograficheskikh grupp I”, Sib. zh. indust. matem., 3:2 (2000), 43–62 | MR | Zbl

[2] R. M. Garipov, “Algebraicheskii metod vychisleniya kristallograficheskikh grupp II”, Sib. zh. indust. matem., 4:1 (2001), 52–72 | MR | Zbl

[3] I. A. Baltag, V. P. Garit, “Polnyi vyvod fedorovskikh grupp psevdoevklidovoi ploskosti”, Issledovaniya po diskretnoi geometrii, Izd-vo KGU, Kishinev, 1974, 91–107 | MR

[4] I. A. Baltag, V. P. Garit, Dvumernye diskretnye afinnye gruppy, Shtiintsa, Kishinev, 1981 | MR | Zbl

[5] L. Bieberbach, “Über die Bewegungsgruppen der Euklidischen Räume”, Math. Ann., 70 (1911), 297–336 | DOI | MR | Zbl

[6] L. Bieberbach, “Die Gruppen mit endlichem Fundamentalbereich”, Math. Ann., 72 (1912), 400–412 | DOI | MR | Zbl

[7] B. Delone, N. Padurov, A. Aleksandrov, Matematicheskie osnovy strukturnogo analiza kristallov, Gostekhizdat, L., M., 1934

[8] K. F. Gauss, Trudy po teorii chisel, Izd-vo AN SSSR, M., 1959 | MR

[9] P. Billingslei, Ergodicheskaya teoriya i informatsiya, Mir, M., 1969 | MR

[10] B. M. Gurevich, Ya. G. Sinai, “Algebraicheskie avtomorfizmy tora i tsepi Markova”, dop. k kn. [9], 205–233