Ornament Groups on a Minkowski Plane
Algebra i logika, Tome 42 (2003) no. 6, pp. 655-682
Voir la notice de l'article provenant de la source Math-Net.Ru
We are engaged in classifying up to isomorphism of discrete subgroups of an affine transformation group on a plane (a two-dimensional space) preserving the Minkowski metric. It is proved that, for subgroups that do not coincide with Euclidean ones, the orbit of almost every point is everywhere dense.
Keywords:
ornament group, affine transformation groups on a plane, Minkowski plane, ergodic map.
Mots-clés : pseudoeuclidean space, $Gamma$-equivalence
Mots-clés : pseudoeuclidean space, $Gamma$-equivalence
@article{AL_2003_42_6_a1,
author = {R. M. Garipov},
title = {Ornament {Groups} on {a~Minkowski} {Plane}},
journal = {Algebra i logika},
pages = {655--682},
publisher = {mathdoc},
volume = {42},
number = {6},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/}
}
R. M. Garipov. Ornament Groups on a Minkowski Plane. Algebra i logika, Tome 42 (2003) no. 6, pp. 655-682. http://geodesic.mathdoc.fr/item/AL_2003_42_6_a1/