The Greatest Proper Variety of $m$-Groups
Algebra i logika, Tome 42 (2003) no. 5, pp. 624-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the variety $\mathcal N_m$ of all normal-valued $m$-groups is the greatest proper subvariety in the lattice of all $m$-varieties.
Keywords: variety, semiordered group
Mots-clés : $m$-group, group of monotonic transformations.
@article{AL_2003_42_5_a4,
     author = {V. M. Kopytov and J. Rach\r{u}nek},
     title = {The {Greatest} {Proper} {Variety} of $m${-Groups}},
     journal = {Algebra i logika},
     pages = {624--635},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/}
}
TY  - JOUR
AU  - V. M. Kopytov
AU  - J. Rachůnek
TI  - The Greatest Proper Variety of $m$-Groups
JO  - Algebra i logika
PY  - 2003
SP  - 624
EP  - 635
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/
LA  - ru
ID  - AL_2003_42_5_a4
ER  - 
%0 Journal Article
%A V. M. Kopytov
%A J. Rachůnek
%T The Greatest Proper Variety of $m$-Groups
%J Algebra i logika
%D 2003
%P 624-635
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/
%G ru
%F AL_2003_42_5_a4
V. M. Kopytov; J. Rachůnek. The Greatest Proper Variety of $m$-Groups. Algebra i logika, Tome 42 (2003) no. 5, pp. 624-635. http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/

[1] P. Lorenzen, “Über Halbgeordnete Gruppen”, Arh. Math., Karlsruhe, 2:1–2 (1949/1950), 66–70 | DOI | MR

[2] P. Lorenzen, “Über Halbgeordnete Gruppen”, Math. Z., 52:5 (1949), 483–526 | MR | Zbl

[3] A. H. Clifford, “Partially ordered groups of the second and third kinds”, Proc. Am. Math. Soc., 17:1 (1966), 219–225 | DOI | MR | Zbl

[4] P. G. Kontorovich, A. I. Kokorin, “Ob odnom tipe chastichno uporyadochennykh grupp”, Matem. zap. Uralsk. un-ta, 3:3 (1962), 27–31 | MR

[5] V. V. Bludov, A. I. Kokorin, “Poluodnorodno uporyadochivaemye gruppy”, Algebraicheskie sistemy, Irkutsk, 1976, 3–16

[6] M. Giraudet, F. Lucas, “Groupes á motié ordonnés”, Fundam. Math., 139:2 (1991), 75–89 | MR | Zbl

[7] M. Giraudet, J. Rachunek, “Varieties of half lattice-ordered groups of monotonic permutations of chains”, Czech. Math. J., 49:4 (1999), 743–766 | DOI | MR | Zbl

[8] W. Ch. Holland, “The largest proper variety of lattice-ordered groups”, Proc. Am. Math. Soc., 57:1 (1976), 25–28 | DOI | MR | Zbl

[9] V. M. Kopytov, Reshetochno uporyadochennye gruppy, Nauka, M., 1984 | MR | Zbl

[10] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Kluwer Academic Publ., Dordrecht a.o., 1994 | MR | Zbl