The Greatest Proper Variety of $m$-Groups
Algebra i logika, Tome 42 (2003) no. 5, pp. 624-635

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the variety $\mathcal N_m$ of all normal-valued $m$-groups is the greatest proper subvariety in the lattice of all $m$-varieties.
Keywords: variety, semiordered group
Mots-clés : $m$-group, group of monotonic transformations.
@article{AL_2003_42_5_a4,
     author = {V. M. Kopytov and J. Rach\r{u}nek},
     title = {The {Greatest} {Proper} {Variety} of $m${-Groups}},
     journal = {Algebra i logika},
     pages = {624--635},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/}
}
TY  - JOUR
AU  - V. M. Kopytov
AU  - J. Rachůnek
TI  - The Greatest Proper Variety of $m$-Groups
JO  - Algebra i logika
PY  - 2003
SP  - 624
EP  - 635
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/
LA  - ru
ID  - AL_2003_42_5_a4
ER  - 
%0 Journal Article
%A V. M. Kopytov
%A J. Rachůnek
%T The Greatest Proper Variety of $m$-Groups
%J Algebra i logika
%D 2003
%P 624-635
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/
%G ru
%F AL_2003_42_5_a4
V. M. Kopytov; J. Rachůnek. The Greatest Proper Variety of $m$-Groups. Algebra i logika, Tome 42 (2003) no. 5, pp. 624-635. http://geodesic.mathdoc.fr/item/AL_2003_42_5_a4/