Antiadditive Primitive Connected Theories
Algebra i logika, Tome 42 (2003) no. 4, pp. 473-496.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our main goal is to prove that an infinite group is interpreted in every primitive connected non-superstable theory. Previously, we have introduced the concept of primitive connected theories, for which the quantifier elimination theorem was proved generalizing a similar elimination result for modules due to Baur, Monk, and Garavaglia. Here, we study primitive connected theories in which an infinite group is not interpreted, that is, theories that differ radically from theories of modules, but have a similar structure theory. Such are said to be antiadditive. (Note that theories of modules, as distinct from antiadditive ones, may be non-superstable.)
Keywords: primitive connected theory, antiadditive theory
Mots-clés : group.
@article{AL_2003_42_4_a3,
     author = {E. A. Palyutin},
     title = {Antiadditive {Primitive} {Connected} {Theories}},
     journal = {Algebra i logika},
     pages = {473--496},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a3/}
}
TY  - JOUR
AU  - E. A. Palyutin
TI  - Antiadditive Primitive Connected Theories
JO  - Algebra i logika
PY  - 2003
SP  - 473
EP  - 496
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_4_a3/
LA  - ru
ID  - AL_2003_42_4_a3
ER  - 
%0 Journal Article
%A E. A. Palyutin
%T Antiadditive Primitive Connected Theories
%J Algebra i logika
%D 2003
%P 473-496
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_4_a3/
%G ru
%F AL_2003_42_4_a3
E. A. Palyutin. Antiadditive Primitive Connected Theories. Algebra i logika, Tome 42 (2003) no. 4, pp. 473-496. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a3/

[1] E. A. Palyutin, “Primitivno svyaznye teorii”, Algebra i logika, 39:2 (2000), 145–169 | MR | Zbl

[2] M. Ziegler, “Model theory of modules”, Ann. Pure Appl. Logic, 26:2 (1984), 149–213 | DOI | MR | Zbl

[3] E. A. Palyutin, “Additive theories”, Proceedings of Logic Colloquium 98, Lect. Notes Log., 13, ASL, Massachusetts, 2000, 352–356 | MR

[4] E. A. Palyutin, “Kategorichnye khornovy klassy. 1”, Algebra i logika, 19:5 (1980), 582–614 | MR | Zbl

[5] S. Shelah, “Stability, f.c.p., and superstability; model theoretic properties of formulas in first order theory”, Ann. Math. Logic, 3:3 (1971), 271–362 | DOI | MR | Zbl