The Fixed Point Group of a~Free Group Automorphism
Algebra i logika, Tome 42 (2003) no. 4, pp. 422-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the fixed point group of an arbitrary automorphism of a free group of finite rank has an algorithmically computable basis.
Mots-clés : automorphism
Keywords: basis for fixed point groups of automorphisms, irreducible automorphism, free group of finite rank, relative train track map.
@article{AL_2003_42_4_a2,
     author = {O. S. Maslakova},
     title = {The {Fixed} {Point} {Group} of {a~Free} {Group} {Automorphism}},
     journal = {Algebra i logika},
     pages = {422--472},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/}
}
TY  - JOUR
AU  - O. S. Maslakova
TI  - The Fixed Point Group of a~Free Group Automorphism
JO  - Algebra i logika
PY  - 2003
SP  - 422
EP  - 472
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/
LA  - ru
ID  - AL_2003_42_4_a2
ER  - 
%0 Journal Article
%A O. S. Maslakova
%T The Fixed Point Group of a~Free Group Automorphism
%J Algebra i logika
%D 2003
%P 422-472
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/
%G ru
%F AL_2003_42_4_a2
O. S. Maslakova. The Fixed Point Group of a~Free Group Automorphism. Algebra i logika, Tome 42 (2003) no. 4, pp. 422-472. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/

[1] M. Bestvina, M. Handel, “Train tracks and automorphisms of free groups”, Ann. Math. (2), 135:1 (1992), 1–53 | DOI | MR

[2] M. M. Cohen, M. Lustig, “On the dynamics and the fixed subgroup of a free group automorphism”, Invent. Math., 96:3 (1989), 613–638 | DOI | MR | Zbl

[3] E. C. Turner, “Finding indivisible Nielsen paths for a train tracks map”, Proc. of a workshop held at Heriot-Watt Univ. (Edinburg, 1993), Lond. Math. Soc. Lect. Note Ser., 204, Cambridge Univ. Press., Cambridge, 1995, 300–313 | MR | Zbl

[4] M. Lustig, Structure and conjugacy for automorphisms of free groups. I, II, www.mpim-Bonn.mpg.de/MPI-2000-130.ps, MPI-2001-4.ps

[5] J. L. Dyer, G. P. Scott, “Periodic automorphisms of free groups”, Commun. Algebra, 3:3 (1975), 195–201 | DOI | MR | Zbl

[6] D. Cooper, “Automorphisms of free groups have finitely generated fixed point sets”, J. Algebra, 111:2 (1987), 453–456 | DOI | MR | Zbl

[7] W. Dicks, E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemp. Math., 195, Am. Math. Soc., Providence, RI, 1996 | MR | Zbl