Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2003_42_4_a2, author = {O. S. Maslakova}, title = {The {Fixed} {Point} {Group} of {a~Free} {Group} {Automorphism}}, journal = {Algebra i logika}, pages = {422--472}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/} }
O. S. Maslakova. The Fixed Point Group of a~Free Group Automorphism. Algebra i logika, Tome 42 (2003) no. 4, pp. 422-472. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a2/
[1] M. Bestvina, M. Handel, “Train tracks and automorphisms of free groups”, Ann. Math. (2), 135:1 (1992), 1–53 | DOI | MR
[2] M. M. Cohen, M. Lustig, “On the dynamics and the fixed subgroup of a free group automorphism”, Invent. Math., 96:3 (1989), 613–638 | DOI | MR | Zbl
[3] E. C. Turner, “Finding indivisible Nielsen paths for a train tracks map”, Proc. of a workshop held at Heriot-Watt Univ. (Edinburg, 1993), Lond. Math. Soc. Lect. Note Ser., 204, Cambridge Univ. Press., Cambridge, 1995, 300–313 | MR | Zbl
[4] M. Lustig, Structure and conjugacy for automorphisms of free groups. I, II, www.mpim-Bonn.mpg.de/MPI-2000-130.ps, MPI-2001-4.ps
[5] J. L. Dyer, G. P. Scott, “Periodic automorphisms of free groups”, Commun. Algebra, 3:3 (1975), 195–201 | DOI | MR | Zbl
[6] D. Cooper, “Automorphisms of free groups have finitely generated fixed point sets”, J. Algebra, 111:2 (1987), 453–456 | DOI | MR | Zbl
[7] W. Dicks, E. Ventura, The group fixed by a family of injective endomorphisms of a free group, Contemp. Math., 195, Am. Math. Soc., Providence, RI, 1996 | MR | Zbl