Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets
Algebra i logika, Tome 42 (2003) no. 4, pp. 413-421
Voir la notice de l'article provenant de la source Math-Net.Ru
We establish a condition that is necessary for Rogers semilattices of computable numberings of finite families of computably enumerable sets to be isomorphic.
Keywords:
computable numbering, computably enumerable set, Rogers semilattice.
@article{AL_2003_42_4_a1,
author = {Yu. L. Ershov},
title = {Necessary {Isomorphism} {Conditions} for {Rogers} {Semilattices} of {Finite} {Partially} {Ordered} {Sets}},
journal = {Algebra i logika},
pages = {413--421},
publisher = {mathdoc},
volume = {42},
number = {4},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/}
}
Yu. L. Ershov. Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets. Algebra i logika, Tome 42 (2003) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/