Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets
Algebra i logika, Tome 42 (2003) no. 4, pp. 413-421.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a condition that is necessary for Rogers semilattices of computable numberings of finite families of computably enumerable sets to be isomorphic.
Keywords: computable numbering, computably enumerable set, Rogers semilattice.
@article{AL_2003_42_4_a1,
     author = {Yu. L. Ershov},
     title = {Necessary {Isomorphism} {Conditions} for {Rogers} {Semilattices} of {Finite} {Partially} {Ordered} {Sets}},
     journal = {Algebra i logika},
     pages = {413--421},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets
JO  - Algebra i logika
PY  - 2003
SP  - 413
EP  - 421
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/
LA  - ru
ID  - AL_2003_42_4_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets
%J Algebra i logika
%D 2003
%P 413-421
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/
%G ru
%F AL_2003_42_4_a1
Yu. L. Ershov. Necessary Isomorphism Conditions for Rogers Semilattices of Finite Partially Ordered Sets. Algebra i logika, Tome 42 (2003) no. 4, pp. 413-421. http://geodesic.mathdoc.fr/item/AL_2003_42_4_a1/

[1] Yu. L. Ershov, Teoriya numeratsii, Nauka, M., 1977 | MR

[2] S. D. Denisov, “Stroenie verkhnei polureshetki rekursivno-perechislimykh $m$-stepenei i smezhnye voprosy. 1”, Algebra i logika, 17:6 (1978), 643–683 | MR | Zbl