Superlocals in Symmetric and Alternating Groups
Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365

Voir la notice de l'article provenant de la source Math-Net.Ru

On Aschbacher's definition, a subgroup $N$ of a finite group $G$ is called a $p$-superlocal for a prime $p$ if $N=N_G(O_p(N))$. We describe the $p$-superlocals in symmetric and alternating groups, thereby resolving part way Problem 11.3 in the Kourovka Notebook [3].
Keywords: symmetric group, alternating group, $p$-superlocal.
@article{AL_2003_42_3_a5,
     author = {D. O. Revin},
     title = {Superlocals in {Symmetric} and {Alternating} {Groups}},
     journal = {Algebra i logika},
     pages = {338--365},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Superlocals in Symmetric and Alternating Groups
JO  - Algebra i logika
PY  - 2003
SP  - 338
EP  - 365
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/
LA  - ru
ID  - AL_2003_42_3_a5
ER  - 
%0 Journal Article
%A D. O. Revin
%T Superlocals in Symmetric and Alternating Groups
%J Algebra i logika
%D 2003
%P 338-365
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/
%G ru
%F AL_2003_42_3_a5
D. O. Revin. Superlocals in Symmetric and Alternating Groups. Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/