Superlocals in Symmetric and Alternating Groups
Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365
Voir la notice de l'article provenant de la source Math-Net.Ru
On Aschbacher's definition, a subgroup $N$ of a finite group $G$ is called a $p$-superlocal for a prime $p$ if $N=N_G(O_p(N))$. We describe the $p$-superlocals in symmetric and alternating groups, thereby resolving part way Problem 11.3 in the Kourovka Notebook [3].
Keywords:
symmetric group, alternating group, $p$-superlocal.
@article{AL_2003_42_3_a5,
author = {D. O. Revin},
title = {Superlocals in {Symmetric} and {Alternating} {Groups}},
journal = {Algebra i logika},
pages = {338--365},
publisher = {mathdoc},
volume = {42},
number = {3},
year = {2003},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/}
}
D. O. Revin. Superlocals in Symmetric and Alternating Groups. Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/