Superlocals in Symmetric and Alternating Groups
Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365.

Voir la notice de l'article provenant de la source Math-Net.Ru

On Aschbacher's definition, a subgroup $N$ of a finite group $G$ is called a $p$-superlocal for a prime $p$ if $N=N_G(O_p(N))$. We describe the $p$-superlocals in symmetric and alternating groups, thereby resolving part way Problem 11.3 in the Kourovka Notebook [3].
Keywords: symmetric group, alternating group, $p$-superlocal.
@article{AL_2003_42_3_a5,
     author = {D. O. Revin},
     title = {Superlocals in {Symmetric} and {Alternating} {Groups}},
     journal = {Algebra i logika},
     pages = {338--365},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/}
}
TY  - JOUR
AU  - D. O. Revin
TI  - Superlocals in Symmetric and Alternating Groups
JO  - Algebra i logika
PY  - 2003
SP  - 338
EP  - 365
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/
LA  - ru
ID  - AL_2003_42_3_a5
ER  - 
%0 Journal Article
%A D. O. Revin
%T Superlocals in Symmetric and Alternating Groups
%J Algebra i logika
%D 2003
%P 338-365
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/
%G ru
%F AL_2003_42_3_a5
D. O. Revin. Superlocals in Symmetric and Alternating Groups. Algebra i logika, Tome 42 (2003) no. 3, pp. 338-365. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a5/

[1] A. Borel, J. Tits, “Eléments unipotents et sousgroupes paraboliques de groupes rúctifs. I”, Invent. Math., 12:2 (1971), 95–104 | DOI | MR | Zbl

[2] M. Aschbacher, Subgroup structure of finite groups, Proc. Rutger group theory year, 1983/1984 | MR

[3] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 15-e izd., In-t matem. SO RAN, Novosibirsk, 2002 | MR

[4] M. Sawabe, “2-Radical subgroups of the Conway simple group $Co_1$”, J. Algebra, 211:1 (1999), 115–133 | DOI | MR | Zbl

[5] M. Sawabe, “The 3-radicals of $Co_1$ and the 2-radicals of Rud”, Arch. Math., 74:6 (2000), 414–422 | DOI | MR | Zbl

[6] S. Joshiara, “The radical 2-subgroups of the sporadic simple groups $J_4$, $Co_2$ and $Th$”, J. Algebra, 233:1 (2000), 309–341 | DOI | MR

[7] S. Joshiara, “Radical subgroups of the sporadic simple group of Suzuki”, Groups and combinatorics–in memory of Michio Suzuki, Adv. Stud. Pure Math., 32, Math. Soc. Jap., Tokyo, 2001, 453–464 | MR

[8] S. Joshiara, “The radical 2-subgroups of some sporadic simple groups”, J. Algebra, 248:1 (2002), 237–264 | DOI | MR

[9] M. Kitazume, S. Joshiara, “The radical subgroups of the Fischer simple groups”, J. Algebra, 255:1 (2002), 22–58 | DOI | MR | Zbl