A Modal Logic Based on Linearly Ordered $f$-Spaces
Algebra i logika, Tome 42 (2003) no. 3, pp. 320-337
Cet article a éte moissonné depuis la source Math-Net.Ru
A modal logic associated with the $f$-spaces introduced by Ershov is examined. We construct a modal calculus that is complete w.r.t. the class of all strictly linearly ordered $f_0$-frames, and the class of all strictly linearly ordered $f$-frames.
Keywords:
modal logic, $f$-space, strictly linearly ordered $f$-frame, strictly linearly ordered $f_0$-frame.
@article{AL_2003_42_3_a4,
author = {V. F. Murzina},
title = {A {Modal} {Logic} {Based} on {Linearly} {Ordered} $f${-Spaces}},
journal = {Algebra i logika},
pages = {320--337},
year = {2003},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a4/}
}
V. F. Murzina. A Modal Logic Based on Linearly Ordered $f$-Spaces. Algebra i logika, Tome 42 (2003) no. 3, pp. 320-337. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a4/
[1] Yu. L. Ershov, Teoriya numeratsii, ch. 2, NGU, Novosibirsk, 1973 | MR
[2] E. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR
[3] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl
[4] R. Feis, Modalnaya logika, Nauka, M., 1974 | MR
[5] D. Gabbay, Investigations in modal and tense logics with applications to problems in philosophy and linguistics, Synthese Library, 92, D. Reidel Publ. Co., Dordrecht–Boston, 1976 | MR | Zbl
[6] K. Segerberg, An essay in classical modal logic, Uppsala, 1971 | MR