Groups with Largely Splitting Automorphisms of Orders Three and Four
Algebra i logika, Tome 42 (2003) no. 3, pp. 293-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subset $X$ of a group $G$ is said to be large (on the left) if, for any finite set of elements $g_1,\ldots,g_k$ in $G$, an intersection of the subsets $g_iX=\{g_ix\mid x\in X\}$ is not empty, that is, $\bigcap\limits_{i=1}^{k}g_iX\ne\varnothing$. It is proved that a group in which elements of order 3 form a large subset is in fact of exponent 3. This result follows from the more general theorem on groups with a largely splitting automorphism of order 3, thus answering a question posed by Jaber and Wagner in [1]. For groups with a largely splitting automorphism $\varphi$ of order 4, it is shown that if $H$ is a normal $\varphi$-invariant soluble subgroup of derived length $d$ then the derived subgroup $[H,H]$ is nilpotent of class bounded in terms of $d$. The special case where $\varphi=1$ yields the same result for groups that are largely of exponent 4.
Mots-clés : group
Keywords: large subset, largely splitting automorphism.
@article{AL_2003_42_3_a2,
     author = {N. Yu. Makarenko and E. I. Khukhro},
     title = {Groups with {Largely} {Splitting} {Automorphisms} of {Orders} {Three} and {Four}},
     journal = {Algebra i logika},
     pages = {293--311},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_3_a2/}
}
TY  - JOUR
AU  - N. Yu. Makarenko
AU  - E. I. Khukhro
TI  - Groups with Largely Splitting Automorphisms of Orders Three and Four
JO  - Algebra i logika
PY  - 2003
SP  - 293
EP  - 311
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_3_a2/
LA  - ru
ID  - AL_2003_42_3_a2
ER  - 
%0 Journal Article
%A N. Yu. Makarenko
%A E. I. Khukhro
%T Groups with Largely Splitting Automorphisms of Orders Three and Four
%J Algebra i logika
%D 2003
%P 293-311
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_3_a2/
%G ru
%F AL_2003_42_3_a2
N. Yu. Makarenko; E. I. Khukhro. Groups with Largely Splitting Automorphisms of Orders Three and Four. Algebra i logika, Tome 42 (2003) no. 3, pp. 293-311. http://geodesic.mathdoc.fr/item/AL_2003_42_3_a2/

[1] K. Jaber, F. O. Wagner, “Largeur et nilpotence”, Commun. Algebra, 28:6 (2000), 2869–2885 | DOI | MR | Zbl

[2] B. Poizat, Groupes stables, Nur al-mantiq wal ma'rifah, Villeurbanne, France, 1987 | MR

[3] E. I. Khukhro, “Nilpotentnost razreshimykh grupp, dopuskayuschikh rasscheplyayuschii avtomorfizm prostogo poryadka”, Algebra i logika, 19:1 (1980), 118–129 | MR | Zbl

[4] F. O. Wagner, “Commutator conditions and splitting automorphisms for stable groups”, Arch. Math. Logic, 32:3 (1993), 223–228 | DOI | MR | Zbl

[5] S. J. Tobin, “Groups with exponent four”, Groups, Conf. St. Andrews 1981, Lond. Math. Soc. Lect. Note Ser, 71, Cambridge Univ. Press, Cambridge, 1982, 81–136 | MR

[6] E. Jabara, “Groups admitting a 4-splitting autmomorphism”, Rend. Circ. Mat. Palermo, II. Ser., 45:1 (1996), 84–92 | DOI | MR | Zbl

[7] K. Jaber, “Groups and identities”, Commun. Algebra (to appear)

[8] F. Levi, B. L. van der Waerden, “Über eine besondere Klasse von Gruppen”, Abh. Math. Semin. Hamb. Univ., 9 (1932), 154–158 | DOI | Zbl

[9] D. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1995

[10] P. Hall, “Some suficient conditions for a group to be nilpotent”, Ill. J. Math., 2:4B (1958), 787–801 | MR

[11] A. G. R. Stewart, “On the class of certain nilpotent groups”, Proc. R. Soc. Lond., Ser. A, 292 (1966), 374–379 | DOI | MR | Zbl