A Generalization of Fibonacci Groups
Algebra i logika, Tome 42 (2003) no. 2, pp. 131-160

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the class of cyclically presented groups which contain Fibonacci groups and Sieradski groups. Conditions are specified for these groups to be finite, pairwise isomorphic, or aspherical. As a partial answer to the question of Cavicchioli, Hegenbarth, and Repov, it is stated that there exists a wide subclass of groups with an odd number of generators cannot appear as fundamental groups of hyperbolic three-dimensional manifolds of finite volume.
@article{AL_2003_42_2_a0,
     author = {V. G. Bardakov and A. Yu. Vesnin},
     title = {A {Generalization} of {Fibonacci} {Groups}},
     journal = {Algebra i logika},
     pages = {131--160},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - A. Yu. Vesnin
TI  - A Generalization of Fibonacci Groups
JO  - Algebra i logika
PY  - 2003
SP  - 131
EP  - 160
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/
LA  - ru
ID  - AL_2003_42_2_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A A. Yu. Vesnin
%T A Generalization of Fibonacci Groups
%J Algebra i logika
%D 2003
%P 131-160
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/
%G ru
%F AL_2003_42_2_a0
V. G. Bardakov; A. Yu. Vesnin. A Generalization of Fibonacci Groups. Algebra i logika, Tome 42 (2003) no. 2, pp. 131-160. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/