A Generalization of Fibonacci Groups
Algebra i logika, Tome 42 (2003) no. 2, pp. 131-160
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the class of cyclically presented groups which contain Fibonacci groups and Sieradski groups. Conditions are specified for these groups to be finite, pairwise isomorphic, or aspherical. As a partial answer to the question of Cavicchioli, Hegenbarth, and Repov, it is stated that there exists a wide subclass of groups with an odd number of generators cannot appear as fundamental groups of hyperbolic three-dimensional manifolds of finite volume.
@article{AL_2003_42_2_a0,
     author = {V. G. Bardakov and A. Yu. Vesnin},
     title = {A {Generalization} of {Fibonacci} {Groups}},
     journal = {Algebra i logika},
     pages = {131--160},
     year = {2003},
     volume = {42},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/}
}
TY  - JOUR
AU  - V. G. Bardakov
AU  - A. Yu. Vesnin
TI  - A Generalization of Fibonacci Groups
JO  - Algebra i logika
PY  - 2003
SP  - 131
EP  - 160
VL  - 42
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/
LA  - ru
ID  - AL_2003_42_2_a0
ER  - 
%0 Journal Article
%A V. G. Bardakov
%A A. Yu. Vesnin
%T A Generalization of Fibonacci Groups
%J Algebra i logika
%D 2003
%P 131-160
%V 42
%N 2
%U http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/
%G ru
%F AL_2003_42_2_a0
V. G. Bardakov; A. Yu. Vesnin. A Generalization of Fibonacci Groups. Algebra i logika, Tome 42 (2003) no. 2, pp. 131-160. http://geodesic.mathdoc.fr/item/AL_2003_42_2_a0/

[1] A. Cavicchioli, F. Hegenbarth, D. Repovš, “On manifold spines and cyclic presentations of groups”, Knot Theory, Banach Cent. Publ., 42, PWN, Warsaw, 1998, 49–56 | MR

[2] U. Massi, Dzh. Stollings, Algebraicheskaya topologiya, Mir, M., 1977 | MR | Zbl

[3] D. Kollinz, Kh. Tsishang, “Kombinatornaya teoriya grupp i fundamentalnye gruppy”, Algebra-7, Itogi nauki i tekhniki. Sovrem. probl. matem. Fundam. napravleniya, 58, VINITI, M., 1990, 5–190 | MR

[4] J. Stallings, “On the recursiveness of sets of presentations of 3-manifold groups”, Fundam. Math., 51 (1962/63), 191–194 | MR | Zbl

[5] J. Conway, “Advanced problem 5327”, Am. Math. Mon., 72 (1965), 915 | DOI | MR

[6] D. L. Johnson, Topics in the theory of group presentations, Lond. Math. Soc. Lect. Note Ser., 42, Cambridge Univ. Press, Cambridge, 1980 | MR | Zbl

[7] D. L. Johnson, J. W. Wamsley, D. Wright, “The Fibonacci Groups”, Proc. London Math. Soc., III. Ser., 29:4 (1974), 577–592 | DOI | MR | Zbl

[8] R. Thomas, “The Fibonacci groups $F(2,2m)$”, Bull. London Math. Soc., 21:5(92) (1989), 463–465 | DOI | MR | Zbl

[9] R. Thomas, “The Fibonacci groups revised”, Geometry of Banach spaces, Proc. conf. held in Strobol, Austria, Lond. Math. Soc. Lect. Note Ser., 160, Cambridge Univ. Press, Cambridge, 1989, 445–456 | MR

[10] A. Cavicchioli, F. Spaggiari, “The classification of 3-manifolds with spines related to Fibonacci groups”, Algebraic topology. Homotopy and group homology, Lect. Notes Math., 1509, Springer-Verlag, Berlin a. o., 1992, 50–78 | MR

[11] M. J. Dunwoody, “Cyclic presentations and 3-manifolds”, Proc. inter. conf. “Groups-Korea'94”, Walter de Gruyter, Berlin–New York, 1995, 47–55 | MR | Zbl

[12] A. C. Kim, “On the Fibonacci group and related topics”, Proc. conf. algebra (1991, Barnaul, Russia), Contemp. Math., 184, Am. Math. Soc, Providence, RI, 1995, 231–235 | MR | Zbl

[13] A. C. Kim, Y. Kim, A. Vesnin, Proc. inter. conf. “Groups-Korea 98”, Walter de Gruyter, Berlin–New York, 2000 | Zbl

[14] G. Kim, Y. Kim, A. Vesnin, “The knot $5_2$ and cyclically presented groups”, J. Korean Math. Soc., 35 (1998), 961–980 | MR | Zbl

[15] A. Yu. Vesnin, A. Ch. Kim, “Drobnye gruppy Fibonachchi i mnogoobraziya”, Sib. matem. zhurnal, 39:4 (1998), 765–775 | MR | Zbl

[16] C. Maclachlan, A. W. Reid, “Generalised Fibonacci manifolds”, Transform. Groups, 2:2 (1997), 165–182 | DOI | MR | Zbl

[17] M. Takahashi, “On the presentations of the fundamental groups of 3-manifolds”, Tsukuba J. Math., 13 (1989), 175–189 | MR | Zbl

[18] P. Bandieri, A. C. Kim, M. Mulazzani, “On the cyclic coverings of the knot $5_2$”, Proc. Edinb. Math. Soc., II. Ser., 42:3 (1999), 575–587 | DOI | MR | Zbl

[19] M. R. Casali, “Fundamental groups of branched covering spaces of $S^3$”, Ann. Univ. Ferrara, Nuova Ser., Sez. VII, 33 (1987), 247–258 | MR | Zbl

[20] A. Cavicchioli, R. Ruini, F. Spaggiari, “Cyclic branched coverings of 2-bridge knots”, Revista Mat. Complut., 12 (1999), 383–416 | MR | Zbl

[21] H. Helling, A. C. Kim, J. L. Mennicke, “A geometric study of Fibonacci groups”, J. Lie Theory, 8 (1998), 1–23 | MR | Zbl

[22] H. Helling, A. C. Kim, J. L. Mennicke, “Some honey-combs in hyperbolic 3-space”, Commun. Algebra, 23:14 (1995), 5169–5206 | DOI | MR | Zbl

[23] J. Minkus, “The branched cyclic coverings of 2 bridge knots and links”, Mem. Am. Math. Soc., 35:255 (1982), 1–68 | MR

[24] C. Maclachlan, “Generalizations of Fibonacci numbers, groups and manifolds”, Combinatorial and geometric group theory, Edinburg, 1993, Lond. Math. Soc. Lect. Note Ser., 204, 1995, 233–238 | MR | Zbl

[25] M. I. Prischepov, “Asphericity, atoricity, and symmetrically presented groups”, Commun. Algebra, 23:13 (1995), 5095–5117 | DOI | MR

[26] A. Sieradski, “Combinatorial squashings, 3-manifolds, and the third homology of groups”, Invent. Math., 84:1 (1986), 121–139 | DOI | MR | Zbl

[27] A. Cavicchioli, F. Hegenbarth, A. C. Kim, “A geometric study of Sieradski groups”, Algebra Colloq., 5:2 (1998), 203–217 | MR | Zbl

[28] R. Thomas, “On a question of Kim concerning certain group presentations”, Bull. Korean Math. Soc., 28 (1991), 219–244 | MR

[29] N. Gilbert, J. Howie, “LOG groups and cyclically presented groups”, J. Algebra, 174:1 (1995), 118–131 | DOI | MR | Zbl

[30] R. W. K. Odoni, “Some Diophantine problems arising in the theory of cyclically presented groups”, Glasg. Math. J., 41:2 (1999), 157–166 | DOI | MR

[31] M. Edjvet, “On the asphericity of one-relator relative presentations”, Proc. R. Soc. Edinb., Sect. A, Math., 124 (1994), 713–728 | MR | Zbl

[32] GAP: Groups, algorithms and programming, http://www.dcs.st-and.ac.uk/gap

[33] W. A. Bogley, S. J. Pride, “Aspherical relative presentations”, Proc. Edinb. Math. Soc., II. Ser., 35:1 (1992), 1–39 | DOI | MR | Zbl

[34] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[35] C. P. Chalk, “Fibonacci groups with aspherical presentations”, Commun. Algebra, 26:5 (1998), 1511–1546 | DOI | MR | Zbl

[36] A. Szczepański, A. Vesnin, “On generalized Fibonacci groups with odd number of generators”, Commun. Algebra, 28:2 (2000), 959–965 | DOI | MR | Zbl

[37] P. Skott, Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[38] A. Berdon, Geometriya diskretnykh grupp, Nauka, M., 1986 | MR

[39] E. B. Vinberg, O. V. Shvartsman, “Diskretnye gruppy dvizhenii prostranstv postoyannoi krivizny”, Geometriya-2, Itogi nauki i tekhniki. Sovr. probl. matem. Fundam. napravleniya, 29, VINITI, M., 1988, 147–259

[40] J. L. Mennicke, Groups-Korea 1988, Lect. Note Math., 1398, 1988 | MR