Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AL_2003_42_1_a4, author = {L. L. Maksimova}, title = {Implicit {Definability} and {Positive} {Logics}}, journal = {Algebra i logika}, pages = {65--93}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2003}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a4/} }
L. L. Maksimova. Implicit Definability and Positive Logics. Algebra i logika, Tome 42 (2003) no. 1, pp. 65-93. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a4/
[1] E. W. Beth, “On Padoa's method in the theory of definitions”, Indag. Math., 15:4 (1953), 330–339 | MR
[2] L. Maksimova, “Intuitionistic logic and implicit definability”, Ann. Pure Appl. Logic, 105:1–3 (2000), 83–102 | DOI | MR | Zbl
[3] L. L. Maksimova, “Interpolyatsionnaya teorema Kreiga i amalgamiruemye mnogoobraziya”, Doklady AN SSSR, 237:6 (1977), 1281–1284 | MR | Zbl
[4] L. L. Maksimova, “Proektivnye svoistva Beta v modalnykh i superintuitsionistskikh logikakh”, Algebra i logika, 38:3 (1999), 316–333 | MR | Zbl
[5] G. Kreisel, “Explicit definability in intuitionistic logic”, J. Symb. Log., 25:4 (1960), 389–390
[6] W. Craig, “Three uses of Herbrand-Gentzen theorem in relating model theory and proof theory”, J. Symb. Log., 22 (1957), 269–285 | DOI | MR | Zbl
[7] I. Johansson, “Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus”, Compos. Math., 4 (1937), 119–136 | MR
[8] Kh. Raseva, R. Sikorskii, Matematika metamatematiki, Nauka, M., 1972 | MR
[9] M. I. Verkhozina, “Promezhutochnye pozitivnye logiki”, Algoritmicheskie voprosy algebraicheskikh sistem, Irkutsk, 1978, 13–25
[10] K. Segerberg, “Propositional logics related to Heyting's and Johansson's”, Theoria, 34 (1968), 26–61 | MR
[11] W. Rautenberg, Klassische und nicht-klassische Aussagenlogik, Vieweg, Braunschweig, Wiesbaden, 1979 | Zbl
[12] S. Odintsov, “On $j$-algebras and $j$-frames”, Abstracts, Intern. Maltsev conference on Math. Logic, Novosibirsk, 1999, 101–102
[13] L. L. Maksimova, “Teorema Kreiga v superintuitsionistskikh logikakh i amalgamiruemye mnogoobraziya psevdobulevykh algebr”, Algebra i logika, 16:6 (1977), 643–681 | MR | Zbl
[14] L. L. Maksimova, “Superintuitsionistskie logiki i proektivnoe svoistvo Beta”, Algebra i logika, 38:6 (1999), 680–696 | MR | Zbl
[15] E. Hoogland, “Algebraic characterisations of various Beth definability properties”, Stud. Log., 65:1 (2000), 91–112 | DOI | MR | Zbl
[16] L. L. Maksimova, “Interpolyatsionnye teoremy v modalnykh logikakh i amalgamiruemye mnogoobraziya topobulevykh algebr”, Algebra i logika, 18:5 (1979), 556–586 | MR | Zbl
[17] J. Czelakowski, “Logical matrices and the amalgamation property”, Stud. Log., 41:4 (1982), 329–341 | DOI | MR | Zbl
[18] I. Sain, “Beth's and Craig's Properties via Epimorphisms and Amalgamation in Algebraic Logic”, Algebraic Logic and Universal Algebra in Computer Science, Lect. Notes Comput. Sci., 425, eds. C. H. Bergman, R. D. Maddux, D. I. Pigozzi, Springer-Verlag, Berlin a. o., 1990, 209–226 | MR
[19] J. Czelakowski, D. Pigozzi, “Amalgamation and Interpolation in Abstract Algebraic Logic”, Models, Algebras and Proofs, Selected papers of the $X$ Latin American Symposium on Mathematical Logic held in Bogota, 1999, Marcel Dekker Inc., New York, 187–265 | MR | Zbl
[20] L. L. Maksimova, “Razreshimost proektivnogo svoistva Beta v mnogoobraziyakh geitingovykh algebr”, Algebra i logika, 40:3 (2001), 290–301 | MR | Zbl