Test Rank for Some Free Polynilpotent Groups
Algebra i logika, Tome 42 (2003) no. 1, pp. 37-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem on possible test rank values for groups of the form $F/R'$. It is shown that test rank of a free polynilpotent group $F_r(\mathbb{A}\mathbb{N}_{c_1}\ldots\mathbb{N}_{c_l})$ is equal to $r-1$ or $r$, for any $r \geqslant 2$ and every collection $(c_1,\ldots,c_l)$ of classes. Moreover, $tr(F_r(\mathbb{A}\mathbb{N}_c))=r-1$ for $r\geqslant 2$ and $c\geqslant 2$.
Keywords: test rank, polynilpotent group, free group.
@article{AL_2003_42_1_a2,
     author = {Ch. K. Gupta and E. I. Timoshenko},
     title = {Test {Rank} for {Some} {Free} {Polynilpotent} {Groups}},
     journal = {Algebra i logika},
     pages = {37--50},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2003_42_1_a2/}
}
TY  - JOUR
AU  - Ch. K. Gupta
AU  - E. I. Timoshenko
TI  - Test Rank for Some Free Polynilpotent Groups
JO  - Algebra i logika
PY  - 2003
SP  - 37
EP  - 50
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2003_42_1_a2/
LA  - ru
ID  - AL_2003_42_1_a2
ER  - 
%0 Journal Article
%A Ch. K. Gupta
%A E. I. Timoshenko
%T Test Rank for Some Free Polynilpotent Groups
%J Algebra i logika
%D 2003
%P 37-50
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2003_42_1_a2/
%G ru
%F AL_2003_42_1_a2
Ch. K. Gupta; E. I. Timoshenko. Test Rank for Some Free Polynilpotent Groups. Algebra i logika, Tome 42 (2003) no. 1, pp. 37-50. http://geodesic.mathdoc.fr/item/AL_2003_42_1_a2/