Complete Classes of Regular Polygons over Monoids of Depth 2
Algebra i logika, Tome 41 (2002) no. 6, pp. 745-753

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for a linearly ordered monoid of depth 2, with an axiomatizable class of regular polygons, the completeness of this class is equivalent to its model completeness, and we give an algebraic description of such monoids.
Keywords: linearly ordered monoid, complete class, model complete class.
@article{AL_2002_41_6_a4,
     author = {E. V. Ovchinnikova},
     title = {Complete {Classes} of {Regular} {Polygons} over {Monoids} of {Depth~2}},
     journal = {Algebra i logika},
     pages = {745--753},
     publisher = {mathdoc},
     volume = {41},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_6_a4/}
}
TY  - JOUR
AU  - E. V. Ovchinnikova
TI  - Complete Classes of Regular Polygons over Monoids of Depth 2
JO  - Algebra i logika
PY  - 2002
SP  - 745
EP  - 753
VL  - 41
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_6_a4/
LA  - ru
ID  - AL_2002_41_6_a4
ER  - 
%0 Journal Article
%A E. V. Ovchinnikova
%T Complete Classes of Regular Polygons over Monoids of Depth 2
%J Algebra i logika
%D 2002
%P 745-753
%V 41
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_6_a4/
%G ru
%F AL_2002_41_6_a4
E. V. Ovchinnikova. Complete Classes of Regular Polygons over Monoids of Depth 2. Algebra i logika, Tome 41 (2002) no. 6, pp. 745-753. http://geodesic.mathdoc.fr/item/AL_2002_41_6_a4/