Partial Orders of the Group $\mathrm{Aut}\mathbf Q$
Algebra i logika, Tome 41 (2002) no. 6, pp. 713-729.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study maximal and minimal partial orders of the group $\mathrm{Aut}\mathbf Q$ of all order automorphisms of a linearly ordered set $\mathbf Q$ of rational numbers. A proof is given for the fact that $\mathrm{Aut}\mathbf Q$ has 36 distinct minimal non-trivial partial orders, and their complete description is provided in. Also, all maximal partial orders of each of the normal subgroups of $\mathrm{Aut}\mathbf Q$ are described.
Keywords: linearly ordered set of rational numbers, minimal partial order, order automorphism.
Mots-clés : maximal partial order
@article{AL_2002_41_6_a2,
     author = {A. V. Zenkov},
     title = {Partial {Orders} of the {Group} $\mathrm{Aut}\mathbf Q$},
     journal = {Algebra i logika},
     pages = {713--729},
     publisher = {mathdoc},
     volume = {41},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_6_a2/}
}
TY  - JOUR
AU  - A. V. Zenkov
TI  - Partial Orders of the Group $\mathrm{Aut}\mathbf Q$
JO  - Algebra i logika
PY  - 2002
SP  - 713
EP  - 729
VL  - 41
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_6_a2/
LA  - ru
ID  - AL_2002_41_6_a2
ER  - 
%0 Journal Article
%A A. V. Zenkov
%T Partial Orders of the Group $\mathrm{Aut}\mathbf Q$
%J Algebra i logika
%D 2002
%P 713-729
%V 41
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_6_a2/
%G ru
%F AL_2002_41_6_a2
A. V. Zenkov. Partial Orders of the Group $\mathrm{Aut}\mathbf Q$. Algebra i logika, Tome 41 (2002) no. 6, pp. 713-729. http://geodesic.mathdoc.fr/item/AL_2002_41_6_a2/

[1] C. W. Holland, “Partial orders of the group of automorphisms of the real line”, Algebra (Novosibirsk, 1989), Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 197–207 | MR

[2] V. M. Kopytov, H. Ya. Medvedev, Pravouporyadochennye gruppy, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[3] V. M. Kopytov, N. Ya. Medvedev, The theory of lattice-ordered groups, Kluwer Academic Publ., Dordrecht–Boston–New York, 1994 | MR | Zbl

[4] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1972 | MR | Zbl

[5] E. C. Weinberg, “Embedding in a divisible lattice-ordered group”, J. Lond. Math. Soc., 42:3(167) (1967), 504–506 | DOI | MR | Zbl

[6] C. W. Holland, “The lattice-ordered group of automorphisms of an ordered set”, Michigan Math. J., 10:4 (1963), 399–408 | DOI | MR | Zbl

[7] A. M. W. Glass, Ordered permutation groups, Lond. Math. Soc. Lect. Note Ser., 55, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl

[8] N. Ya. Medvedev, “Chastichnye poryadki na gruppakh Dlaba”, Algebra i logika, 40:2 (2001), 135–157 | MR | Zbl

[9] Y. Gurevich, C. W. Holland, “Recognizing the real line”, Trans. Am. Math. Soc., 265:2 (1981), 527–534 | DOI | MR | Zbl