Multi-Valued Fields.~II
Algebra i logika, Tome 41 (2002) no. 6, pp. 682-712.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main model-theoretic results on multi-valued fields with near Boolean families of valuation rings obtained in authoor's book “Multi-Valued Fields” [in Russian], Nauch. Kniga, Novosibirsk (2000) (Ch.4, Sec.  4.6) are generalized along two lines: we weaken the restriction on being absolutely unramified to a condition of being finite for an absolute ramification index, and we combine, through context, Theorems 4.6.2 and 4.6.4 (4.6.3 and 4.6.5).
Keywords: multi-valued field, Boolean family of valuation rings, absolute ramification index.
@article{AL_2002_41_6_a1,
     author = {Yu. L. Ershov},
     title = {Multi-Valued {Fields.~II}},
     journal = {Algebra i logika},
     pages = {682--712},
     publisher = {mathdoc},
     volume = {41},
     number = {6},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_6_a1/}
}
TY  - JOUR
AU  - Yu. L. Ershov
TI  - Multi-Valued Fields.~II
JO  - Algebra i logika
PY  - 2002
SP  - 682
EP  - 712
VL  - 41
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_6_a1/
LA  - ru
ID  - AL_2002_41_6_a1
ER  - 
%0 Journal Article
%A Yu. L. Ershov
%T Multi-Valued Fields.~II
%J Algebra i logika
%D 2002
%P 682-712
%V 41
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_6_a1/
%G ru
%F AL_2002_41_6_a1
Yu. L. Ershov. Multi-Valued Fields.~II. Algebra i logika, Tome 41 (2002) no. 6, pp. 682-712. http://geodesic.mathdoc.fr/item/AL_2002_41_6_a1/

[1] Yu. L. Ershov, Kratno normirovannye polya, Nauchnaya kniga, Novosibirsk, 2000

[2] Yu. L. Ershov, Kratno normirovannye polya, Uspekhi matem. nauk, 37, no. 3, 1982 | MR | Zbl

[3] R. Balbes, Ph. Dwinger, Distributive lattices, Missouri Press, Columbia, MI, 1974 | MR | Zbl

[4] G. Keisler, Ch. Ch. Chang, Teoriya modelei, Mir, Moskva, 1977 | MR

[5] Yu. L. Ershov, “Neposredstvennye rasshtreniya pryuferovykh kolets”, Algebra i logika, 40:3 (2001), 262–289 | MR | Zbl

[6] A. Prestel, J. Schmidt, “Decidability of the rings of real algebraic and $p$-adic algebraic integers”, J. reine angew. Math., 414 (1991), 141–148 | MR | Zbl

[7] L. Darniere, “Nonsingular Hasse principle for rings”, J. reine angew. Math., 529 (2000), 75–100 | MR | Zbl

[8] B. Green, F. Pop, P. Roquette, “On Rumely's local-global principle”, Jahresber. Deutsch. Math. Verein., 97:2 (1995), 47–74 | MR