Partial Results in $\Delta_3^0$-Categoricity in Linear Orderings and Boolean Algebras
Algebra i logika, Tome 41 (2002) no. 5, pp. 531-552.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of $\Delta_3^0$-categoricity in linear orderings and Boolean algebras is examined. We provide a proof for the fact that there are uncountably many relatively $\Delta_3^0$-categorical linear orderings, and furnish a proof of another fact which suggests that the (unrelatively) $\Delta_3^0$-categorical linear orderings may be very difficult to classify. In stark contrast to these results for linear orderings, a complete classification of the relatively $\Delta_3^0$-categorical Boolean algebras is given.
Keywords: linear ordering, Boolean algebra, $\Delta_3^0$-categoricity.
@article{AL_2002_41_5_a1,
     author = {Ch. F. McCoy},
     title = {Partial {Results} in $\Delta_3^0${-Categoricity} in {Linear} {Orderings} and {Boolean} {Algebras}},
     journal = {Algebra i logika},
     pages = {531--552},
     publisher = {mathdoc},
     volume = {41},
     number = {5},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_5_a1/}
}
TY  - JOUR
AU  - Ch. F. McCoy
TI  - Partial Results in $\Delta_3^0$-Categoricity in Linear Orderings and Boolean Algebras
JO  - Algebra i logika
PY  - 2002
SP  - 531
EP  - 552
VL  - 41
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_5_a1/
LA  - ru
ID  - AL_2002_41_5_a1
ER  - 
%0 Journal Article
%A Ch. F. McCoy
%T Partial Results in $\Delta_3^0$-Categoricity in Linear Orderings and Boolean Algebras
%J Algebra i logika
%D 2002
%P 531-552
%V 41
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_5_a1/
%G ru
%F AL_2002_41_5_a1
Ch. F. McCoy. Partial Results in $\Delta_3^0$-Categoricity in Linear Orderings and Boolean Algebras. Algebra i logika, Tome 41 (2002) no. 5, pp. 531-552. http://geodesic.mathdoc.fr/item/AL_2002_41_5_a1/

[1] S. S. Goncharov, V. D. Dzgoev, “Avtoustoichivost modelei”, Algebra i logika, 19:1 (1980), 45–58 | MR | Zbl

[2] S. S. Goncharov, “Avtoustoichivost modelei i abelevykh grupp”, Algebra i logika, 19:1 (1980), 23–44 | MR | Zbl

[3] J. B. Remmel, “Recursively categorical linear orderings”, Proc. Am. Math. Soc., 83:2 (1981), 387–391 | DOI | MR | Zbl

[4] J. B. Remmel, “Recursive isomorphism types of recursive Boolean algebras”, J. Symb. Log., 46:3 (1981), 572–594 | DOI | MR | Zbl

[5] P. La Roche, “Recursively presented Boolean algebras”, Notices Am. Math. Soc., 24, 1977

[6] C. Mccoy, $\Delta_2^0$-categoricity in Boolean algebras and linear orderings, preprint | MR

[7] S. S. Goncharov, “Avtoustoichivost i vychislimye semeistva konstruktivizatsii”, Algebra i logika, 14:6 (1975), 647–680 | MR | Zbl

[8] C. J. Ash, J. F. Knight, Computable structures and the hyperarithmetical hierarchy, Elsevier Science, 2000 | MR

[9] C. J. Ash, J. F. Knight, M. Manasse, T. Slaman, “Generic copies of countable structures”, Ann. Pure Appi. Logic, 42:3 (1989), 195–205 | DOI | MR | Zbl

[10] J. Chisholm, “Effective model theory vs. recursive model theory”, J. Symb. Log., 55:3 (1990), 1168–1191 | DOI | MR | Zbl

[11] J. C. Rosenstein, Linear Orderings, Academic Press, 1982 | MR | Zbl

[12] M. Moses, “Recursive linear orderings with recursive successivities”, Ann. Pure Appl. Logic, 27:3 (1984), 253–264 | DOI | MR | Zbl