Mots-clés : torsion-free polygon, stable class.
@article{AL_2002_41_4_a4,
author = {A. A. Stepanova},
title = {Monoids with {Stable} {Torsion-Free} {Polygons}},
journal = {Algebra i logika},
pages = {481--492},
year = {2002},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_4_a4/}
}
A. A. Stepanova. Monoids with Stable Torsion-Free Polygons. Algebra i logika, Tome 41 (2002) no. 4, pp. 481-492. http://geodesic.mathdoc.fr/item/AL_2002_41_4_a4/
[1] T. G. Mustafin, “O stabilnostnoi teorii poligonov”, Teoriya modelei i ee primenenie, Tr. in-ta matem. SO AN SSSR, 8, Nauka, Novosibirsk, 1988, 92–107 | MR
[2] J. B. Fountain, V. Gould, Stability of $S$-sets, preprint
[3] A. A. Stepanova, “O monoidakh s superstabilnymi ploskimi poligonami”, Logika i prilozheniya, Tez. dokl. mezhdunar. konf., posvyasch. 60-letiyu so dnya rozhdeniya ak. Yu. L. Ershova, In-t diskret. matem. i inform., Novosibirsk, 2000
[4] U. Knauer, M. Petrich, “Characterization of monoids by torsion-free, flat, projective and free acts”, Arch. Math., 36:4 (1981), 289–294 | DOI | MR | Zbl
[5] S. Shelah, Classification theory and the number of non-isomorphic models, Stud. Logic Found. Math., 92, North-Holland, Amsterdam, 1978 | MR | Zbl