$\Sigma$-Admissible Families over Linear Orders
Algebra i logika, Tome 41 (2002) no. 2, pp. 228-252.

Voir la notice de l'article provenant de la source Math-Net.Ru

Admissible sets of the form $\operatorname{HYP}(\mathfrak M)$, where $\mathfrak M$ is a recursively saturated system, are treated. We provide descriptions of subsets $\mathfrak M$, which are $\Sigma_*$-sets in $\operatorname{HYP}(\mathfrak M)$, and of families of subsets $\mathfrak M$, which form $\Sigma$-regular families in $\operatorname{HYP}(\mathfrak M)$, in terms of the concept of being fundamental couched in the article. Fundamental subsets and families are characterized for models of dense linear orderings.
Keywords: admissible sets, recursively saturated system, $\Sigma$-regular family, fundamental subset.
@article{AL_2002_41_2_a7,
     author = {A. I. Stukachev},
     title = {$\Sigma${-Admissible} {Families} over {Linear} {Orders}},
     journal = {Algebra i logika},
     pages = {228--252},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a7/}
}
TY  - JOUR
AU  - A. I. Stukachev
TI  - $\Sigma$-Admissible Families over Linear Orders
JO  - Algebra i logika
PY  - 2002
SP  - 228
EP  - 252
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a7/
LA  - ru
ID  - AL_2002_41_2_a7
ER  - 
%0 Journal Article
%A A. I. Stukachev
%T $\Sigma$-Admissible Families over Linear Orders
%J Algebra i logika
%D 2002
%P 228-252
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a7/
%G ru
%F AL_2002_41_2_a7
A. I. Stukachev. $\Sigma$-Admissible Families over Linear Orders. Algebra i logika, Tome 41 (2002) no. 2, pp. 228-252. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a7/

[1] Yu. L. Ershov, Opredelimost i vychislimost, Sibirskaya shkola algebry i logiki, Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[2] A. Adamson, “Admissible sets and the saturation of structures”, Ann. Math. Logic, 14:2 (1978), 111–157 | DOI | MR | Zbl

[3] A. Adamson, “Saturated structures, unions of chains and preservation theorems”, Ann. Math. Logic, 19:1 (1980), 67–96 | DOI | MR | Zbl

[4] V. Yu. Sazonov, D. I. Sviridenko, “Denotatsionnaya semantika yazyka $\Sigma$-vyrazhenii”, Logicheskie voprosy teorii tipov dannykh, Vychislit. sist., 114, In-t matem. SO RAN, Novosibirsk, 1986, 16–34 | MR

[5] J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin, 1975 | MR | Zbl

[6] Y. N. Moschovakis, Elementary induction on abstract structures, North-Holland, 1974 | MR | Zbl

[7] Yu. L. Ershov, “$\Sigma$-dopustimye mnozhestva”, Logicheskie voprosy teorii tipov dannykh, Vychislit. sist., 114, In-t matem. SO RAN, Novosibirsk, 1986, 35–39 | MR

[8] A. I. Stukachev, “Teorema ob uniformizatsii v nasledstvenno konechnykh nadstroikakh”, Obobschennaya vychislimost i opredelimost, Vychislit. sist., 161, In-t matem. SO RAN, Novosibirsk, 1998, 3–14 | MR

[9] L. van der Dries, “Tame topology and $o$-minimal structures”, Lond. Math. Soc. Lect. Note Ser., 248, Cambridge Univ. Press, Cambridge, 1998 | MR | Zbl