Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture
Algebra i logika, Tome 41 (2002) no. 2, pp. 223-227

Voir la notice de l'article provenant de la source Math-Net.Ru

A monoid $S$ is called an $\omega$-stabilizer (superstabilizer, or stabilizer) if every $S$-polygon has an $\omega$-stable (superstable, or stable) theory. It is proved that every $\omega$-stabilizer is a regular monoid. This confirms the Mustafin – Poizat conjecture and allows us to end up the description of $\omega$-stabilizers.
Keywords: monoid, regular monoid, $\omega$-stabilizer, $\omega$-stable theory.
@article{AL_2002_41_2_a6,
     author = {A. A. Stepanova},
     title = {Monoids {All} {Polygons} {Over} {Which} {Are} $\omega${-Stable:} {Proof} of the {Mustafin~{\textendash}} {Poizat} {Conjecture}},
     journal = {Algebra i logika},
     pages = {223--227},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/}
}
TY  - JOUR
AU  - A. A. Stepanova
TI  - Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture
JO  - Algebra i logika
PY  - 2002
SP  - 223
EP  - 227
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/
LA  - ru
ID  - AL_2002_41_2_a6
ER  - 
%0 Journal Article
%A A. A. Stepanova
%T Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture
%J Algebra i logika
%D 2002
%P 223-227
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/
%G ru
%F AL_2002_41_2_a6
A. A. Stepanova. Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture. Algebra i logika, Tome 41 (2002) no. 2, pp. 223-227. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/