Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture
Algebra i logika, Tome 41 (2002) no. 2, pp. 223-227
Cet article a éte moissonné depuis la source Math-Net.Ru
A monoid $S$ is called an $\omega$-stabilizer (superstabilizer, or stabilizer) if every $S$-polygon has an $\omega$-stable (superstable, or stable) theory. It is proved that every $\omega$-stabilizer is a regular monoid. This confirms the Mustafin – Poizat conjecture and allows us to end up the description of $\omega$-stabilizers.
Keywords:
monoid, regular monoid, $\omega$-stabilizer, $\omega$-stable theory.
@article{AL_2002_41_2_a6,
author = {A. A. Stepanova},
title = {Monoids {All} {Polygons} {Over} {Which} {Are} $\omega${-Stable:} {Proof} of the {Mustafin~{\textendash}} {Poizat} {Conjecture}},
journal = {Algebra i logika},
pages = {223--227},
year = {2002},
volume = {41},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/}
}
A. A. Stepanova. Monoids All Polygons Over Which Are $\omega$-Stable: Proof of the Mustafin – Poizat Conjecture. Algebra i logika, Tome 41 (2002) no. 2, pp. 223-227. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a6/
[1] T. G. Mustafin, “O stabilnostnoi teorii poligonov”, Teoriya modelei i ee primeneniya, Tr. In-ta matem. SO AN SSSR, 8, Nauka, Novosibirsk, 1988, 92–107 | MR
[2] V. S. Bogomolov, T. G. Mustafin, “Opisanie kommutativnykh monoidov, vse poligony nad kotorymi $\omega$-stabilny”, Algebra i logika, 28:4 (1989), 371–381 | MR | Zbl
[3] T. G. Mustafin, B. Poizat, “Polygones”, Math. Log. Quart., 41:1 (1995), 93–110 | DOI | MR | Zbl
[4] T. G. Mustafin, “K opisaniyu monoidov, nad kotorymi vse poligony imeyut $\omega$-stabilnuyu teoriyu”, Algebra i logika, 29:6 (1990), 675–695 | MR | Zbl