Embedding the Outer Automorphism Group~$\operatorname{Out}(F_n)$ of a~Free Group of Rank~$n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$
Algebra i logika, Tome 41 (2002) no. 2, pp. 123-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for every $n\geqslant1$, the group $\operatorname{Out}(F_n)$ is embedded in the group $\operatorname{Out}(F_m)$ with $m=1+(n-1)k^n$, where $k$ is an arbitrary natural number coprime to $n-1$.
Keywords: group of outer automorphisms, free group.
@article{AL_2002_41_2_a0,
     author = {O. V. Bogopolskii and D. V. Puga},
     title = {Embedding the {Outer} {Automorphism} {Group~}$\operatorname{Out}(F_n)$ of {a~Free} {Group} of {Rank~}$n$ in the {Group} $\operatorname{Out}(F_m)$ for $m>n$},
     journal = {Algebra i logika},
     pages = {123--129},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_2_a0/}
}
TY  - JOUR
AU  - O. V. Bogopolskii
AU  - D. V. Puga
TI  - Embedding the Outer Automorphism Group~$\operatorname{Out}(F_n)$ of a~Free Group of Rank~$n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$
JO  - Algebra i logika
PY  - 2002
SP  - 123
EP  - 129
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_2_a0/
LA  - ru
ID  - AL_2002_41_2_a0
ER  - 
%0 Journal Article
%A O. V. Bogopolskii
%A D. V. Puga
%T Embedding the Outer Automorphism Group~$\operatorname{Out}(F_n)$ of a~Free Group of Rank~$n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$
%J Algebra i logika
%D 2002
%P 123-129
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_2_a0/
%G ru
%F AL_2002_41_2_a0
O. V. Bogopolskii; D. V. Puga. Embedding the Outer Automorphism Group~$\operatorname{Out}(F_n)$ of a~Free Group of Rank~$n$ in the Group $\operatorname{Out}(F_m)$ for $m>n$. Algebra i logika, Tome 41 (2002) no. 2, pp. 123-129. http://geodesic.mathdoc.fr/item/AL_2002_41_2_a0/

[1] W. Magnus, C. Tretkoff, “Representations of automorphism groups of free groups”, Word Problems II, Stud. Logic Found. Math., 95, North-Holland, Amsterdam, 1980, 255–259 | MR

[2] D. G. Khramtsov, “O vneshnikh avtomorfizmakh svobodnykh grupp”, Teoretiko-gruppovye issledovaniya, UrO AN SSSR, Sverdlovsk, 1990, 95–127 | MR

[3] R. Lindon, P. Shupp, Kombinatornaya teoriya grupp, Mir, M., 1980 | MR

[4] S. M. Gersten, “A presentation for the special automorphisms of a free group”, J. Pure Appl. Algebra, 33:3 (1984), 269–279 | DOI | MR | Zbl