Interpreting Intuitionistic Propositional Logic in Terms of Intuitionistic Protothetics
Algebra i logika, Tome 41 (2002) no. 1, pp. 104-113
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algebra of sentences of the quite intuitionistic protothetics, that is, an intuitionistic propositional logic with quantifiers augmented by the negation of the excluded middle, is a faithful model of intuitionistic propositional logic.
Keywords: quite intuitionistic protothetics, intuitionistic propositional logic, interpretation, completeness theorem.
@article{AL_2002_41_1_a5,
     author = {A. D. Yashin},
     title = {Interpreting {Intuitionistic} {Propositional} {Logic} in {Terms} of {Intuitionistic} {Protothetics}},
     journal = {Algebra i logika},
     pages = {104--113},
     year = {2002},
     volume = {41},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a5/}
}
TY  - JOUR
AU  - A. D. Yashin
TI  - Interpreting Intuitionistic Propositional Logic in Terms of Intuitionistic Protothetics
JO  - Algebra i logika
PY  - 2002
SP  - 104
EP  - 113
VL  - 41
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a5/
LA  - ru
ID  - AL_2002_41_1_a5
ER  - 
%0 Journal Article
%A A. D. Yashin
%T Interpreting Intuitionistic Propositional Logic in Terms of Intuitionistic Protothetics
%J Algebra i logika
%D 2002
%P 104-113
%V 41
%N 1
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a5/
%G ru
%F AL_2002_41_1_a5
A. D. Yashin. Interpreting Intuitionistic Propositional Logic in Terms of Intuitionistic Protothetics. Algebra i logika, Tome 41 (2002) no. 1, pp. 104-113. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a5/

[1] C. A. Smorynski, “Applications of Kripke models”, Mathematical investigation of intuitionistic arithmetic and analysis, Lect. Notes Math., 344, ed. A. S. Troelstra, 1973, 324–391 | MR

[2] A. D. Yashin, “Ob interpretatsii intuitsionistskoi logiki vyskazyvanii v intuitsionistskoi prototetike”, Tezisy Mezhd. konf. “Logika i prilozheniya”, Novosibirsk, 2000, 110

[3] S. K. Sobolev, “Ob intuitsionistskom ischislenii vyskazyvanii s kvantorami”, Matem. zametki, 22:1 (1977), 69–76 | MR | Zbl

[4] D. Gabbay, “On 2-nd order intuuitionistic propositional calculus with full comprehension”, Arch. Math. Logik Grundlagenforsch., 16:3–4 (1974), 177–186 | DOI | MR | Zbl

[5] A. G. Dragalin, “Algebraicheskie modeli intuitsionistskikh teorii”, Logicheskii vyvod, Nauka, M., 1979 | MR | Zbl

[6] A. Chërch, Vvedenie v matematicheskuyu logiku, t. 1, IL, M., 1960

[7] D. Pravits, Naturalnyi vyvod, LORI, M., 1997

[8] G. K. Dardzhaniya, “Sekventsialnyi variant modalnoi sistemy $I^\Delta$”, Metalogicheskie issledovaniya, M., 1985, 59–72

[9] A. D. Yashin, “Irreflexive modality in the intuitionistic propositional logic and Novikov completeness”, J. Philos. Log., 28:2 (1999), 175–197 | DOI | MR | Zbl

[10] R. E. Kirk, “A characterization of the classes of finite tree frames which are adequate for the intuitionistic logic”, Z. Math. Logik Grundlagen Math., 26:6 (1980), 497–501 | DOI | MR | Zbl

[11] A. D. Yashin, “Logika Smetanicha $T^\Phi$ i dva opredeleniya novoi intuitsionistskoi svyazki”, Matem. zametki, 56:1 (1994), 135–142 | MR | Zbl