$Z_n$-Orthograded Monocomposition Algebras
Algebra i logika, Tome 41 (2002) no. 1, pp. 57-69

Voir la notice de l'article provenant de la source Math-Net.Ru

We study NQM algebras $A$ having an orthogonal automorphism $\varphi$ of finite order $n\geqslant3 $ (called $Z_n$-orthograded NQM algebras). The $Z_3$-orthograded NQM algebras of dimension 7 are treated in more detail. In particular, we find all algebras $A$ which are not bi-isotropic in this class, and for every algebra $A$, determine an automorphism group $\operatorname{Aut}A$ and an orthogonal automorphism group $\operatorname{Ortaut}A$. In constructing and classifying (up to isomorphism) NQM algebras, use is made of orthogonal decompositions of the algebras.
Keywords: $Z_n$-orthograded $\rm NQM$ algebra
Mots-clés : orthogonal decomposition of algebras, automorphism group, orthogonal automorphism group.
@article{AL_2002_41_1_a2,
     author = {A. T. Gainov},
     title = {$Z_n${-Orthograded} {Monocomposition} {Algebras}},
     journal = {Algebra i logika},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/}
}
TY  - JOUR
AU  - A. T. Gainov
TI  - $Z_n$-Orthograded Monocomposition Algebras
JO  - Algebra i logika
PY  - 2002
SP  - 57
EP  - 69
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/
LA  - ru
ID  - AL_2002_41_1_a2
ER  - 
%0 Journal Article
%A A. T. Gainov
%T $Z_n$-Orthograded Monocomposition Algebras
%J Algebra i logika
%D 2002
%P 57-69
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/
%G ru
%F AL_2002_41_1_a2
A. T. Gainov. $Z_n$-Orthograded Monocomposition Algebras. Algebra i logika, Tome 41 (2002) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/