$Z_n$-Orthograded Monocomposition Algebras
Algebra i logika, Tome 41 (2002) no. 1, pp. 57-69
Voir la notice de l'article provenant de la source Math-Net.Ru
We study NQM algebras $A$ having an orthogonal automorphism $\varphi$ of finite order $n\geqslant3 $ (called $Z_n$-orthograded NQM algebras). The $Z_3$-orthograded NQM algebras of dimension 7 are treated in more detail. In particular, we find all algebras $A$ which are not bi-isotropic in this class, and for every algebra $A$, determine an automorphism group $\operatorname{Aut}A$ and an orthogonal automorphism group $\operatorname{Ortaut}A$. In constructing and classifying (up to isomorphism) NQM algebras, use is made of orthogonal decompositions of the algebras.
Keywords:
$Z_n$-orthograded $\rm NQM$ algebra
Mots-clés : orthogonal decomposition of algebras, automorphism group, orthogonal automorphism group.
Mots-clés : orthogonal decomposition of algebras, automorphism group, orthogonal automorphism group.
@article{AL_2002_41_1_a2,
author = {A. T. Gainov},
title = {$Z_n${-Orthograded} {Monocomposition} {Algebras}},
journal = {Algebra i logika},
pages = {57--69},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2002},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/}
}
A. T. Gainov. $Z_n$-Orthograded Monocomposition Algebras. Algebra i logika, Tome 41 (2002) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a2/