Group Quasivarieties with Infinitely Many Maximal Subquasivarieties
Algebra i logika, Tome 41 (2002) no. 1, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a 2-generated group $G$ and describe a set of proper maximal subquasivarieties in the quasivariety $qG$. This set proves to be infinite, which gives an affirmative answer to Question 14.25 posed by A. I. Budkin in the “Kourovka Notebook”. Moreover, it is shown that every proper subquasivariety in $qG$ is contained in a proper maximal one.
Keywords: group quasivariety, maximal subquasivariety, 2-generated group.
@article{AL_2002_41_1_a0,
     author = {V. V. Bludov},
     title = {Group {Quasivarieties} with {Infinitely} {Many} {Maximal} {Subquasivarieties}},
     journal = {Algebra i logika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2002_41_1_a0/}
}
TY  - JOUR
AU  - V. V. Bludov
TI  - Group Quasivarieties with Infinitely Many Maximal Subquasivarieties
JO  - Algebra i logika
PY  - 2002
SP  - 3
EP  - 14
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2002_41_1_a0/
LA  - ru
ID  - AL_2002_41_1_a0
ER  - 
%0 Journal Article
%A V. V. Bludov
%T Group Quasivarieties with Infinitely Many Maximal Subquasivarieties
%J Algebra i logika
%D 2002
%P 3-14
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2002_41_1_a0/
%G ru
%F AL_2002_41_1_a0
V. V. Bludov. Group Quasivarieties with Infinitely Many Maximal Subquasivarieties. Algebra i logika, Tome 41 (2002) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/AL_2002_41_1_a0/

[1] A. I. Budkin, “O maksimalnykh kvazimnogoobraziyakh grupp”, Algebra i logika, 37:3 (1998), 279–290 | MR | Zbl

[2] Nereshennye voprosy teorii grupp. Kourovskaya tetrad, 14-e izd., In-t matem. SO RAN, Novosibirsk, 1999 | MR

[3] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR

[4] G. Baumslag, “Wreath products and $p$-groups”, Proc. Camb. Philos. Soc., 55:3 (1959), 224–231 | DOI | MR | Zbl

[5] Kh. Neiman, Mnogoobraziya grupp, Mir, M., 1969 | MR

[6] A. I. Kokorin, V. M. Kopytov, Lineino uporyadochennye gruppy, Nauka, M., 1972 | MR | Zbl

[7] V. M. Kopytov, N. Ya. Medvedev, Pravouporyadochennye gruppy (Sibirskaya shkola algebry i logiki), Nauchnaya kniga (NII MIOO NGU), Novosibirsk, 1996 | MR | Zbl

[8] Yu. A. Bakhturin, Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR | Zbl