Quasivarieties and $q$-Compact Classes of Abelian Groups
Algebra i logika, Tome 40 (2001) no. 6, pp. 675-684.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the purposes of algebraic geometry, we need to consider a category of Abelian $A$-groups, that is, those Abelian groups that contain as a subgroup the distinguished copy of an Abelian group $A$. Namely, we deal with the problem of describing $q$-compact classes within a given class of algebraic systems. This problem is solved first for classes of Abelian groups (without constants), and then for the case where a class of $A$-groups consists of the group $A$ itself. We also succeed in obtaining an adequate description of a system of axioms for $A-\operatorname{qvar}(B)$.
Keywords: Abelian group, quasivariety.
Mots-clés : $q$-compact class
@article{AL_2001_40_6_a2,
     author = {V. N. Remeslennikov and N. S. Romanovskii},
     title = {Quasivarieties and $q${-Compact} {Classes} of {Abelian} {Groups}},
     journal = {Algebra i logika},
     pages = {675--684},
     publisher = {mathdoc},
     volume = {40},
     number = {6},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_6_a2/}
}
TY  - JOUR
AU  - V. N. Remeslennikov
AU  - N. S. Romanovskii
TI  - Quasivarieties and $q$-Compact Classes of Abelian Groups
JO  - Algebra i logika
PY  - 2001
SP  - 675
EP  - 684
VL  - 40
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_6_a2/
LA  - ru
ID  - AL_2001_40_6_a2
ER  - 
%0 Journal Article
%A V. N. Remeslennikov
%A N. S. Romanovskii
%T Quasivarieties and $q$-Compact Classes of Abelian Groups
%J Algebra i logika
%D 2001
%P 675-684
%V 40
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_6_a2/
%G ru
%F AL_2001_40_6_a2
V. N. Remeslennikov; N. S. Romanovskii. Quasivarieties and $q$-Compact Classes of Abelian Groups. Algebra i logika, Tome 40 (2001) no. 6, pp. 675-684. http://geodesic.mathdoc.fr/item/AL_2001_40_6_a2/