Residual Finiteness for Admissible Inference Rules
Algebra i logika, Tome 40 (2001) no. 5, pp. 593-618 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We look into methods which make it possible to determine whether or not the modal logics under examination are residually finite w. r. t. admissible inference rules. A general condition is specified which states that modal logics over $K4$ are not residually finite w.ṙ.ṫ. admissibility. It is shown that all modal logics $\lambda$ over $K4$ of width strictly more than 2 which have the co-covering property fail to be residually finite w. r. t. admissible inference rules; in particular, such are $K4$, $GL$, $K4.1$, $K4.2$, $S4.1$, $S4.2$, and $GL.2$. It is proved that all logics $\lambda$ over $S4$ of width at most 2, which are not sublogics of three special table logics, possess the property of being residually finite w. r. t. admissibility. A number of open questions are set up.
Keywords: modal logic, residual finiteness for admissible inference rules.
@article{AL_2001_40_5_a6,
     author = {V. V. Rybakov and V. R. Kiyatkin and T. Oner},
     title = {Residual {Finiteness} for {Admissible} {Inference} {Rules}},
     journal = {Algebra i logika},
     pages = {593--618},
     year = {2001},
     volume = {40},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a6/}
}
TY  - JOUR
AU  - V. V. Rybakov
AU  - V. R. Kiyatkin
AU  - T. Oner
TI  - Residual Finiteness for Admissible Inference Rules
JO  - Algebra i logika
PY  - 2001
SP  - 593
EP  - 618
VL  - 40
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_5_a6/
LA  - ru
ID  - AL_2001_40_5_a6
ER  - 
%0 Journal Article
%A V. V. Rybakov
%A V. R. Kiyatkin
%A T. Oner
%T Residual Finiteness for Admissible Inference Rules
%J Algebra i logika
%D 2001
%P 593-618
%V 40
%N 5
%U http://geodesic.mathdoc.fr/item/AL_2001_40_5_a6/
%G ru
%F AL_2001_40_5_a6
V. V. Rybakov; V. R. Kiyatkin; T. Oner. Residual Finiteness for Admissible Inference Rules. Algebra i logika, Tome 40 (2001) no. 5, pp. 593-618. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a6/