Universal Numbering for Constructive $I$-Algebras
Algebra i logika, Tome 40 (2001) no. 5, pp. 561-579
Cet article a éte moissonné depuis la source Math-Net.Ru
Constructive Boolean algebras with distinguished ideals (we call them $I$-algebras in what follows) are studied. It is proved that a class of all constructive $I$-algebras is strongly computable, that is, the class of constructive $I$-algebras contains a principal computable numbering.
Keywords:
constructive Boolean algebras with distinguished ideals, principal computable numbering.
@article{AL_2001_40_5_a4,
author = {N. T. Kogabaev},
title = {Universal {Numbering} for {Constructive} $I${-Algebras}},
journal = {Algebra i logika},
pages = {561--579},
year = {2001},
volume = {40},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/}
}
N. T. Kogabaev. Universal Numbering for Constructive $I$-Algebras. Algebra i logika, Tome 40 (2001) no. 5, pp. 561-579. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/