Universal Numbering for Constructive $I$-Algebras
Algebra i logika, Tome 40 (2001) no. 5, pp. 561-579.

Voir la notice de l'article provenant de la source Math-Net.Ru

Constructive Boolean algebras with distinguished ideals (we call them $I$-algebras in what follows) are studied. It is proved that a class of all constructive $I$-algebras is strongly computable, that is, the class of constructive $I$-algebras contains a principal computable numbering.
Keywords: constructive Boolean algebras with distinguished ideals, principal computable numbering.
@article{AL_2001_40_5_a4,
     author = {N. T. Kogabaev},
     title = {Universal {Numbering} for {Constructive} $I${-Algebras}},
     journal = {Algebra i logika},
     pages = {561--579},
     publisher = {mathdoc},
     volume = {40},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/}
}
TY  - JOUR
AU  - N. T. Kogabaev
TI  - Universal Numbering for Constructive $I$-Algebras
JO  - Algebra i logika
PY  - 2001
SP  - 561
EP  - 579
VL  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/
LA  - ru
ID  - AL_2001_40_5_a4
ER  - 
%0 Journal Article
%A N. T. Kogabaev
%T Universal Numbering for Constructive $I$-Algebras
%J Algebra i logika
%D 2001
%P 561-579
%V 40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/
%G ru
%F AL_2001_40_5_a4
N. T. Kogabaev. Universal Numbering for Constructive $I$-Algebras. Algebra i logika, Tome 40 (2001) no. 5, pp. 561-579. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a4/