Factorizations of One-Generated Composition Formations
Algebra i logika, Tome 40 (2001) no. 5, pp. 545-560
Cet article a éte moissonné depuis la source Math-Net.Ru
A non-empty formation $\mathfrak F$ of finite groups is said to be solubly saturated, or we call it a composition formation, if every finite group $G$ having a normal subgroup $N$ such that $G/\Phi(N)\in\mathfrak F$ belongs to $\mathfrak F$. An intersection of all composition formations containing a given group $G$ is denoted $c\operatorname{form}G$. Conditions are described under which $\mathfrak F=c\operatorname{form}G$ has the form $\mathfrak F=\mathfrak{MH}$, where $\mathfrak M\ne\mathfrak F\ne\mathfrak H$.
Keywords:
composition formation (= solubly saturated formation of finite groups), solubly normal subgroup.
@article{AL_2001_40_5_a3,
author = {W. Guo and A. N. Skiba},
title = {Factorizations of {One-Generated} {Composition} {Formations}},
journal = {Algebra i logika},
pages = {545--560},
year = {2001},
volume = {40},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/}
}
W. Guo; A. N. Skiba. Factorizations of One-Generated Composition Formations. Algebra i logika, Tome 40 (2001) no. 5, pp. 545-560. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/