Factorizations of One-Generated Composition Formations
Algebra i logika, Tome 40 (2001) no. 5, pp. 545-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-empty formation $\mathfrak F$ of finite groups is said to be solubly saturated, or we call it a composition formation, if every finite group $G$ having a normal subgroup $N$ such that $G/\Phi(N)\in\mathfrak F$ belongs to $\mathfrak F$. An intersection of all composition formations containing a given group $G$ is denoted $c\operatorname{form}G$. Conditions are described under which $\mathfrak F=c\operatorname{form}G$ has the form $\mathfrak F=\mathfrak{MH}$, where $\mathfrak M\ne\mathfrak F\ne\mathfrak H$.
Keywords: composition formation (= solubly saturated formation of finite groups), solubly normal subgroup.
@article{AL_2001_40_5_a3,
     author = {W. Guo and A. N. Skiba},
     title = {Factorizations of {One-Generated} {Composition} {Formations}},
     journal = {Algebra i logika},
     pages = {545--560},
     publisher = {mathdoc},
     volume = {40},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/}
}
TY  - JOUR
AU  - W. Guo
AU  - A. N. Skiba
TI  - Factorizations of One-Generated Composition Formations
JO  - Algebra i logika
PY  - 2001
SP  - 545
EP  - 560
VL  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/
LA  - ru
ID  - AL_2001_40_5_a3
ER  - 
%0 Journal Article
%A W. Guo
%A A. N. Skiba
%T Factorizations of One-Generated Composition Formations
%J Algebra i logika
%D 2001
%P 545-560
%V 40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/
%G ru
%F AL_2001_40_5_a3
W. Guo; A. N. Skiba. Factorizations of One-Generated Composition Formations. Algebra i logika, Tome 40 (2001) no. 5, pp. 545-560. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a3/