Rogers Semilattices of Families of Arithmetic Sets
Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522.

Voir la notice de l'article provenant de la source Math-Net.Ru

We look into algebraic properties of Rogers semilattices of arithmetic sets, such as the existence of minimal elements, minimal covers, and ideals without minimal elements.
Keywords: Rogers semilattice, arithmetic set, minimal cover, and ideal.
Mots-clés : minimal element
@article{AL_2001_40_5_a1,
     author = {S. A. Badaev and S. S. Goncharov},
     title = {Rogers {Semilattices} of {Families} of {Arithmetic} {Sets}},
     journal = {Algebra i logika},
     pages = {507--522},
     publisher = {mathdoc},
     volume = {40},
     number = {5},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - S. S. Goncharov
TI  - Rogers Semilattices of Families of Arithmetic Sets
JO  - Algebra i logika
PY  - 2001
SP  - 507
EP  - 522
VL  - 40
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/
LA  - ru
ID  - AL_2001_40_5_a1
ER  - 
%0 Journal Article
%A S. A. Badaev
%A S. S. Goncharov
%T Rogers Semilattices of Families of Arithmetic Sets
%J Algebra i logika
%D 2001
%P 507-522
%V 40
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/
%G ru
%F AL_2001_40_5_a1
S. A. Badaev; S. S. Goncharov. Rogers Semilattices of Families of Arithmetic Sets. Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/