Rogers Semilattices of Families of Arithmetic Sets
Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We look into algebraic properties of Rogers semilattices of arithmetic sets, such as the existence of minimal elements, minimal covers, and ideals without minimal elements.
Keywords: Rogers semilattice, arithmetic set, minimal cover, and ideal.
Mots-clés : minimal element
@article{AL_2001_40_5_a1,
     author = {S. A. Badaev and S. S. Goncharov},
     title = {Rogers {Semilattices} of {Families} of {Arithmetic} {Sets}},
     journal = {Algebra i logika},
     pages = {507--522},
     year = {2001},
     volume = {40},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/}
}
TY  - JOUR
AU  - S. A. Badaev
AU  - S. S. Goncharov
TI  - Rogers Semilattices of Families of Arithmetic Sets
JO  - Algebra i logika
PY  - 2001
SP  - 507
EP  - 522
VL  - 40
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/
LA  - ru
ID  - AL_2001_40_5_a1
ER  - 
%0 Journal Article
%A S. A. Badaev
%A S. S. Goncharov
%T Rogers Semilattices of Families of Arithmetic Sets
%J Algebra i logika
%D 2001
%P 507-522
%V 40
%N 5
%U http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/
%G ru
%F AL_2001_40_5_a1
S. A. Badaev; S. S. Goncharov. Rogers Semilattices of Families of Arithmetic Sets. Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/