Rogers Semilattices of Families of Arithmetic Sets
Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522
Voir la notice de l'article provenant de la source Math-Net.Ru
We look into algebraic properties of Rogers semilattices of arithmetic sets, such as the existence of minimal elements, minimal covers, and ideals without minimal elements.
Keywords:
Rogers semilattice, arithmetic set, minimal cover, and ideal.
Mots-clés : minimal element
Mots-clés : minimal element
@article{AL_2001_40_5_a1,
author = {S. A. Badaev and S. S. Goncharov},
title = {Rogers {Semilattices} of {Families} of {Arithmetic} {Sets}},
journal = {Algebra i logika},
pages = {507--522},
publisher = {mathdoc},
volume = {40},
number = {5},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/}
}
S. A. Badaev; S. S. Goncharov. Rogers Semilattices of Families of Arithmetic Sets. Algebra i logika, Tome 40 (2001) no. 5, pp. 507-522. http://geodesic.mathdoc.fr/item/AL_2001_40_5_a1/