$G$-Identities of Nilpotent Groups.~II
Algebra i logika, Tome 40 (2001) no. 4, pp. 377-395.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a group $V_{n,red}(G)$ of reduced $G$-identities is described subject to the condition that $G$ is a nilpotent group of class 3. We prove the criterion for a $G$-variety $G\operatorname{-var}(G)$ to be finitely based for such $G$.
Keywords: group of reduced $G$-identities, nilpotent group of class $3$, $G$-variety, finitely based variety.
@article{AL_2001_40_4_a1,
     author = {M. G. Amaglobeli},
     title = {$G${-Identities} of {Nilpotent} {Groups.~II}},
     journal = {Algebra i logika},
     pages = {377--395},
     publisher = {mathdoc},
     volume = {40},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/}
}
TY  - JOUR
AU  - M. G. Amaglobeli
TI  - $G$-Identities of Nilpotent Groups.~II
JO  - Algebra i logika
PY  - 2001
SP  - 377
EP  - 395
VL  - 40
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/
LA  - ru
ID  - AL_2001_40_4_a1
ER  - 
%0 Journal Article
%A M. G. Amaglobeli
%T $G$-Identities of Nilpotent Groups.~II
%J Algebra i logika
%D 2001
%P 377-395
%V 40
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/
%G ru
%F AL_2001_40_4_a1
M. G. Amaglobeli. $G$-Identities of Nilpotent Groups.~II. Algebra i logika, Tome 40 (2001) no. 4, pp. 377-395. http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/