$G$-Identities of Nilpotent Groups. II
Algebra i logika, Tome 40 (2001) no. 4, pp. 377-395
Voir la notice de l'article provenant de la source Math-Net.Ru
The structure of a group $V_{n,red}(G)$ of reduced $G$-identities is described subject to the condition that $G$ is a nilpotent group of class 3. We prove the criterion for a $G$-variety $G\operatorname{-var}(G)$ to be finitely based for such $G$.
Keywords:
group of reduced $G$-identities, nilpotent group of class $3$, $G$-variety, finitely based variety.
@article{AL_2001_40_4_a1,
author = {M. G. Amaglobeli},
title = {$G${-Identities} of {Nilpotent} {Groups.~II}},
journal = {Algebra i logika},
pages = {377--395},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/}
}
M. G. Amaglobeli. $G$-Identities of Nilpotent Groups. II. Algebra i logika, Tome 40 (2001) no. 4, pp. 377-395. http://geodesic.mathdoc.fr/item/AL_2001_40_4_a1/