$n$-Ary Mal'tsev Algebras
Algebra i logika, Tome 40 (2001) no. 3, pp. 309-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

By analogy with $n$-Lie algebras, which are a natural generalization of Lie algebras to the case of $n$-ary multiplication, we define the concept of an $n$-ary Mal'tsev algerba. It is shown that exceptional algebras of a vector cross product are ternary central simple Mal'tsev algebras, which are not 3-Lie algebras if the characteristic of a ground field is distinct from 2 and 3. The basic result is that every $n$-ary algebra of the vector cross product is an $n$-ary central simple Mal'tsev algebra.
Keywords: $n$-ary Mal'tsev algebra.
@article{AL_2001_40_3_a4,
     author = {A. P. Pozhidaev},
     title = {$n${-Ary} {Mal'tsev} {Algebras}},
     journal = {Algebra i logika},
     pages = {309--329},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/}
}
TY  - JOUR
AU  - A. P. Pozhidaev
TI  - $n$-Ary Mal'tsev Algebras
JO  - Algebra i logika
PY  - 2001
SP  - 309
EP  - 329
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/
LA  - ru
ID  - AL_2001_40_3_a4
ER  - 
%0 Journal Article
%A A. P. Pozhidaev
%T $n$-Ary Mal'tsev Algebras
%J Algebra i logika
%D 2001
%P 309-329
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/
%G ru
%F AL_2001_40_3_a4
A. P. Pozhidaev. $n$-Ary Mal'tsev Algebras. Algebra i logika, Tome 40 (2001) no. 3, pp. 309-329. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/