$n$-Ary Mal'tsev Algebras
Algebra i logika, Tome 40 (2001) no. 3, pp. 309-329
Voir la notice de l'article provenant de la source Math-Net.Ru
By analogy with $n$-Lie algebras, which are a natural generalization of Lie algebras to the case of $n$-ary multiplication, we define the concept of an $n$-ary Mal'tsev algerba. It is shown that exceptional algebras of a vector cross product are ternary central simple Mal'tsev algebras, which are not 3-Lie algebras if the characteristic of a ground field is distinct from 2 and 3. The basic result is that every $n$-ary algebra of the vector cross product is an $n$-ary central simple Mal'tsev algebra.
Keywords:
$n$-ary Mal'tsev algebra.
@article{AL_2001_40_3_a4,
author = {A. P. Pozhidaev},
title = {$n${-Ary} {Mal'tsev} {Algebras}},
journal = {Algebra i logika},
pages = {309--329},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/}
}
A. P. Pozhidaev. $n$-Ary Mal'tsev Algebras. Algebra i logika, Tome 40 (2001) no. 3, pp. 309-329. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a4/