Generating Elements for Groups of the Form $F/R'$
Algebra i logika, Tome 40 (2001) no. 3, pp. 251-261
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions are specified for a group of a specified type to be generated by its given elements ($F$ is a free product). Using these conditions (and relying essentially on the Shmel'kin embedding), we establish the criterion of being primitive for metabelian products of Abelian groups. A result by Birman and the primitivity criterion for free metabelian groups are generalized.
Keywords:
metabelian products of Abelian groups, free metabelian group, generator.
@article{AL_2001_40_3_a0,
author = {Ch. K. Gupta and E. I. Timoshenko},
title = {Generating {Elements} for {Groups} of the {Form} $F/R'$},
journal = {Algebra i logika},
pages = {251--261},
year = {2001},
volume = {40},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2001_40_3_a0/}
}
Ch. K. Gupta; E. I. Timoshenko. Generating Elements for Groups of the Form $F/R'$. Algebra i logika, Tome 40 (2001) no. 3, pp. 251-261. http://geodesic.mathdoc.fr/item/AL_2001_40_3_a0/