Recursive Homogeneous Boolean Algebras
Algebra i logika, Tome 40 (2001) no. 2, pp. 174-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

Isomorphism types of countable homogeneous Boolean algebras are described in [1], in which too is settled the question of whether such algebras are decidable. Precisely, a countable homogeneous Boolean algebra has a decidable presentation iff the set by which an isomorphism type of that algebra is characterized belongs to a class $\Pi^0_2$ of the arithmetic hierarchy. The problem of obtaining a characterization for homogeneous Boolean algebras which have a recursive presentation remained open. Partially, here we resolve this problem, viz., estimate an exact upper and an exact lower bounds for the set which an isomorphism type of such any algebra is characterized by in terms of the Feiner hierarchy.
Keywords: recursive homogeneous boolean algebras, the arithmetic hierarchy, the Feiner hierarchy.
@article{AL_2001_40_2_a3,
     author = {S. Yu. Podzorov},
     title = {Recursive {Homogeneous} {Boolean} {Algebras}},
     journal = {Algebra i logika},
     pages = {174--191},
     publisher = {mathdoc},
     volume = {40},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_2_a3/}
}
TY  - JOUR
AU  - S. Yu. Podzorov
TI  - Recursive Homogeneous Boolean Algebras
JO  - Algebra i logika
PY  - 2001
SP  - 174
EP  - 191
VL  - 40
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_2_a3/
LA  - ru
ID  - AL_2001_40_2_a3
ER  - 
%0 Journal Article
%A S. Yu. Podzorov
%T Recursive Homogeneous Boolean Algebras
%J Algebra i logika
%D 2001
%P 174-191
%V 40
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_2_a3/
%G ru
%F AL_2001_40_2_a3
S. Yu. Podzorov. Recursive Homogeneous Boolean Algebras. Algebra i logika, Tome 40 (2001) no. 2, pp. 174-191. http://geodesic.mathdoc.fr/item/AL_2001_40_2_a3/