The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces
Algebra i logika, Tome 40 (2001) no. 1, pp. 30-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Sigma$ be a compact connected surface with basepoint $x$ and $H_1$ and $H_2$ be two finitely generated subgroups of $\pi_1(\Sigma, x)$ on finite sets of generators. It is proved that there exists an algorithm which decides whether there is an automorphism $\alpha\in\operatorname{Aut}(\pi_1(\Sigma, x))$ for which $\alpha (H_1)=H_2$, and if so, it finds such.
Keywords: fundamental groups of compact surfaces, automorphic conjugacy problem for subgroups.
@article{AL_2001_40_1_a2,
     author = {O. V. Bogopolskii},
     title = {The {Automorphic} {Conjugacy} {Problem} for {Subgroups} of {Fundamental} {Groups} of {Compact} {Surfaces}},
     journal = {Algebra i logika},
     pages = {30--59},
     publisher = {mathdoc},
     volume = {40},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2001_40_1_a2/}
}
TY  - JOUR
AU  - O. V. Bogopolskii
TI  - The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces
JO  - Algebra i logika
PY  - 2001
SP  - 30
EP  - 59
VL  - 40
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2001_40_1_a2/
LA  - ru
ID  - AL_2001_40_1_a2
ER  - 
%0 Journal Article
%A O. V. Bogopolskii
%T The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces
%J Algebra i logika
%D 2001
%P 30-59
%V 40
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2001_40_1_a2/
%G ru
%F AL_2001_40_1_a2
O. V. Bogopolskii. The Automorphic Conjugacy Problem for Subgroups of Fundamental Groups of Compact Surfaces. Algebra i logika, Tome 40 (2001) no. 1, pp. 30-59. http://geodesic.mathdoc.fr/item/AL_2001_40_1_a2/