The intrinsic enumerability of linear orders
Algebra i logika, Tome 39 (2000) no. 6, pp. 741-750 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study into the question of which linearly ordered sets are intrinsically enumerable. In particular, it is proved that every countable ordinal lacks this property. To do this, we state a criterion for hereditarily finite admissible sets being existentially equivalent, which is interesting in its own right. Previously, Yu. L. Ershov presented the criterion for elements $h_0$, $h_1$ in $HF(\mathfrak M)$ to realize a same type as applied to suficiently saturated models $\mathfrak M$. Incidentally, that criterion fits with every model $\mathfrak M$ on the condition that we limit ourselves to 1-types.
@article{AL_2000_39_6_a6,
     author = {A. N. Khisamiev},
     title = {The intrinsic enumerability of linear orders},
     journal = {Algebra i logika},
     pages = {741--750},
     year = {2000},
     volume = {39},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - The intrinsic enumerability of linear orders
JO  - Algebra i logika
PY  - 2000
SP  - 741
EP  - 750
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/
LA  - ru
ID  - AL_2000_39_6_a6
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T The intrinsic enumerability of linear orders
%J Algebra i logika
%D 2000
%P 741-750
%V 39
%N 6
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/
%G ru
%F AL_2000_39_6_a6
A. N. Khisamiev. The intrinsic enumerability of linear orders. Algebra i logika, Tome 39 (2000) no. 6, pp. 741-750. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/