The intrinsic enumerability of linear orders
Algebra i logika, Tome 39 (2000) no. 6, pp. 741-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study into the question of which linearly ordered sets are intrinsically enumerable. In particular, it is proved that every countable ordinal lacks this property. To do this, we state a criterion for hereditarily finite admissible sets being existentially equivalent, which is interesting in its own right. Previously, Yu. L. Ershov presented the criterion for elements $h_0$, $h_1$ in $HF(\mathfrak M)$ to realize a same type as applied to suficiently saturated models $\mathfrak M$. Incidentally, that criterion fits with every model $\mathfrak M$ on the condition that we limit ourselves to 1-types.
@article{AL_2000_39_6_a6,
     author = {A. N. Khisamiev},
     title = {The intrinsic enumerability of linear orders},
     journal = {Algebra i logika},
     pages = {741--750},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/}
}
TY  - JOUR
AU  - A. N. Khisamiev
TI  - The intrinsic enumerability of linear orders
JO  - Algebra i logika
PY  - 2000
SP  - 741
EP  - 750
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/
LA  - ru
ID  - AL_2000_39_6_a6
ER  - 
%0 Journal Article
%A A. N. Khisamiev
%T The intrinsic enumerability of linear orders
%J Algebra i logika
%D 2000
%P 741-750
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/
%G ru
%F AL_2000_39_6_a6
A. N. Khisamiev. The intrinsic enumerability of linear orders. Algebra i logika, Tome 39 (2000) no. 6, pp. 741-750. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a6/