Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group
Algebra i logika, Tome 39 (2000) no. 6, pp. 648-661.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that a finite group whose element order set is the same as that of an alternating group $A_n$ of degree $n=r+1$ or $r+2$ for prime $r>5$ or $n=16$ is isomorphic to $A_n$.
@article{AL_2000_39_6_a1,
     author = {A. V. Zavarnitsin},
     title = {Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group},
     journal = {Algebra i logika},
     pages = {648--661},
     publisher = {mathdoc},
     volume = {39},
     number = {6},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/}
}
TY  - JOUR
AU  - A. V. Zavarnitsin
TI  - Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group
JO  - Algebra i logika
PY  - 2000
SP  - 648
EP  - 661
VL  - 39
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/
LA  - ru
ID  - AL_2000_39_6_a1
ER  - 
%0 Journal Article
%A A. V. Zavarnitsin
%T Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group
%J Algebra i logika
%D 2000
%P 648-661
%V 39
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/
%G ru
%F AL_2000_39_6_a1
A. V. Zavarnitsin. Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group. Algebra i logika, Tome 39 (2000) no. 6, pp. 648-661. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/