Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime $r$ and the group
Algebra i logika, Tome 39 (2000) no. 6, pp. 648-661
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that a finite group whose element order set is the same as that of an alternating group $A_n$ of degree $n=r+1$ or $r+2$ for prime $r>5$ or $n=16$ is isomorphic to $A_n$.
@article{AL_2000_39_6_a1,
author = {A. V. Zavarnitsin},
title = {Recognition of alternating groups of degrees~$r+1$ and $r+2$ for prime~$r$ and the group},
journal = {Algebra i logika},
pages = {648--661},
publisher = {mathdoc},
volume = {39},
number = {6},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/}
}
A. V. Zavarnitsin. Recognition of alternating groups of degrees $r+1$ and $r+2$ for prime $r$ and the group. Algebra i logika, Tome 39 (2000) no. 6, pp. 648-661. http://geodesic.mathdoc.fr/item/AL_2000_39_6_a1/