Quasivarieties of Sugihara semilattices with involution
Algebra i logika, Tome 39 (2000) no. 1, pp. 47-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that in the lattice of quasivarieties contained in the quasivariety generated by an $n$-element relatively subdirectly indecomposable Sugihara semilattice with involutions there exists a sublattice isomorphic to the lattice of ideals of a free lattice if and only if $n\geqslant3$. We also give two consequences of this result.
@article{AL_2000_39_1_a3,
     author = {W. Dziobiak},
     title = {Quasivarieties of {Sugihara} semilattices with involution},
     journal = {Algebra i logika},
     pages = {47--65},
     publisher = {mathdoc},
     volume = {39},
     number = {1},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/}
}
TY  - JOUR
AU  - W. Dziobiak
TI  - Quasivarieties of Sugihara semilattices with involution
JO  - Algebra i logika
PY  - 2000
SP  - 47
EP  - 65
VL  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/
LA  - ru
ID  - AL_2000_39_1_a3
ER  - 
%0 Journal Article
%A W. Dziobiak
%T Quasivarieties of Sugihara semilattices with involution
%J Algebra i logika
%D 2000
%P 47-65
%V 39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/
%G ru
%F AL_2000_39_1_a3
W. Dziobiak. Quasivarieties of Sugihara semilattices with involution. Algebra i logika, Tome 39 (2000) no. 1, pp. 47-65. http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/