Quasivarieties of Sugihara semilattices with involution
Algebra i logika, Tome 39 (2000) no. 1, pp. 47-65
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that in the lattice of quasivarieties contained in the quasivariety generated by an $n$-element relatively subdirectly indecomposable Sugihara semilattice with involutions there exists a sublattice isomorphic to the lattice of ideals of a free lattice if and only if $n\geqslant3$. We also give two consequences of this result.
@article{AL_2000_39_1_a3,
author = {W. Dziobiak},
title = {Quasivarieties of {Sugihara} semilattices with involution},
journal = {Algebra i logika},
pages = {47--65},
publisher = {mathdoc},
volume = {39},
number = {1},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/}
}
W. Dziobiak. Quasivarieties of Sugihara semilattices with involution. Algebra i logika, Tome 39 (2000) no. 1, pp. 47-65. http://geodesic.mathdoc.fr/item/AL_2000_39_1_a3/