Multinilponent groups
Algebra i logika, Tome 6 (1967) no. 3, pp. 25-30
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathfrak{N}_k$ be the variety of all nilpoteht groups of class $\leqslant k$. From the varieties $\mathfrak{N}_{k_1},\dots,\mathfrak{N}_{k_s}$ the variety $\mathfrak{N}$ is constructed by intersections and multiplications. Any group of variety $\mathfrak{N}$ is called the multipolynilpotent group. In this note is proved Malcev's hypothesis: free multipolynilpotent group $N$ satisfies the following conditions: $\bigcap\limits_n\gamma_n(N)=\{1\}$, where $\gamma_n(N)$ is $n$ member of descending central series of the group $N$, $n$ is natural number, factors $\gamma_n(N)/\gamma_{n+1}(N)$ are free abelian groups.
@article{AL_1967_6_3_a3,
author = {Yu. M. Gor\v{c}akov},
title = {Multinilponent groups},
journal = {Algebra i logika},
pages = {25--30},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1967},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/}
}
Yu. M. Gorčakov. Multinilponent groups. Algebra i logika, Tome 6 (1967) no. 3, pp. 25-30. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/