Multinilponent groups
Algebra i logika, Tome 6 (1967) no. 3, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{N}_k$ be the variety of all nilpoteht groups of class $\leqslant k$. From the varieties $\mathfrak{N}_{k_1},\dots,\mathfrak{N}_{k_s}$ the variety $\mathfrak{N}$ is constructed by intersections and multiplications. Any group of variety $\mathfrak{N}$ is called the multipolynilpotent group. In this note is proved Malcev's hypothesis: free multipolynilpotent group $N$ satisfies the following conditions: $\bigcap\limits_n\gamma_n(N)=\{1\}$, where $\gamma_n(N)$ is $n$ member of descending central series of the group $N$, $n$ is natural number, factors $\gamma_n(N)/\gamma_{n+1}(N)$ are free abelian groups.
@article{AL_1967_6_3_a3,
     author = {Yu. M. Gor\v{c}akov},
     title = {Multinilponent groups},
     journal = {Algebra i logika},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/}
}
TY  - JOUR
AU  - Yu. M. Gorčakov
TI  - Multinilponent groups
JO  - Algebra i logika
PY  - 1967
SP  - 25
EP  - 30
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/
LA  - ru
ID  - AL_1967_6_3_a3
ER  - 
%0 Journal Article
%A Yu. M. Gorčakov
%T Multinilponent groups
%J Algebra i logika
%D 1967
%P 25-30
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/
%G ru
%F AL_1967_6_3_a3
Yu. M. Gorčakov. Multinilponent groups. Algebra i logika, Tome 6 (1967) no. 3, pp. 25-30. http://geodesic.mathdoc.fr/item/AL_1967_6_3_a3/