On one-sided orders in groups with ascending central series
Algebra i logika, Tome 6 (1967) no. 2, pp. 77-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, that for the right-ordered $Z-A$-group $Q$ the following four properties are equivalent: 1 ) the group $Q$ is archimedean, 2 ) the group $Q$ has no proper convex subgroups, 3 ) in the group $Q$ all abelian subgroups are archimedean, 4) the group $Q$ has the archimedean embedded centre $Z$, i.e . $(\forall q\in Q, \forall z\in Z)\ q>z>1\to (\exists n>0)\ z^n>q$. In the paper [1] it was demonstrated the example of the right-ordered metabelian group, which has the properties 2) and 3), but is not archimedean.
@article{AL_1967_6_2_a6,
     author = {D. M. Smirnov},
     title = {On one-sided orders in groups with ascending central series},
     journal = {Algebra i logika},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1967},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AL_1967_6_2_a6/}
}
TY  - JOUR
AU  - D. M. Smirnov
TI  - On one-sided orders in groups with ascending central series
JO  - Algebra i logika
PY  - 1967
SP  - 77
EP  - 88
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AL_1967_6_2_a6/
LA  - ru
ID  - AL_1967_6_2_a6
ER  - 
%0 Journal Article
%A D. M. Smirnov
%T On one-sided orders in groups with ascending central series
%J Algebra i logika
%D 1967
%P 77-88
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AL_1967_6_2_a6/
%G ru
%F AL_1967_6_2_a6
D. M. Smirnov. On one-sided orders in groups with ascending central series. Algebra i logika, Tome 6 (1967) no. 2, pp. 77-88. http://geodesic.mathdoc.fr/item/AL_1967_6_2_a6/